
A Survey of State Persistency in Peer-to-Peer
Massively Multiplayer Online Games

John S. Gilmore, Student Member, IEEE, and Herman A. Engelbrecht, Member, IEEE

Abstract—Recently, there has been significant research focus on Peer-to-Peer (P2P) Massively Multiplayer Online Games (MMOGs).

A number of architectures have been presented in the literature to implement the P2P approach. One aspect that has not received

sufficient attention in these architectures is state persistency in P2P MMOGs. This survey presents an overview of the current

challenges present in P2P MMOGs, followed by an overview of classic state consistency models used in C/S MMOGs. The survey

then classifies the state persistency techniques currently used in P2P MMOGs into super peer storage, overlay storage, hybrid

storage, and distance-based storage. Key characteristics, namely scalability, fairness, reliability, responsiveness, and security are then

defined. Each state persistency technique is evaluated according to these characteristics and recommendations are then made of

possible future areas of research into the different storage types.

Index Terms—Distributed systems, distributed applications, internet applications, games.

Ç

1 INTRODUCTION

PEER-TO-PEER (P2P) Massively Multiplayer Online Games
(MMOGs) have received significant attention from the

research community, since the first publication on the
subject by Knutssonn et al. in 2004 [1]. P2P MMOGs
promise to solve many issues prevalent in today’s Client/
Server (C/S)-based MMOGs. Some key issues have to be
solved before P2P MMOGs can be implemented commer-
cially. Over the past few years, researchers have been
addressing these challenges.

The focus of this paper is exclusively on one of the key
challenges present in P2P MMOGs, namely: state persis-
tency. The implementation of state persistency in P2P
MMOGs allows for the storage of game data. The fact that
game data must now be distributed among various peers in
the network creates challenges not usually present in classic
C/S MMOGs.

The paper classifies the techniques used in documented
P2P MMOG architectures and discusses the advantages and
disadvantages of the different types of storage. The paper
also shows that no current storage type is well suited to P2P
MMOGs. As the field of P2P MMOGs is a growing one, it is
believed that a comprehensive survey of persistency
techniques is required to act as a basis for further research
into the field.

To the best of our knowledge, such a classification,
where a focus is placed specifically on state persistency in
P2P MMOGs, has not been undertaken in the literature.
Other surveys, relating to P2P MMOGs and P2P overlays in
general are discussed in Section 4. For each included

survey, the differences between this paper and the included
survey are discussed.

The remainder of this paper is structured as follows: the
field of P2P MMOGs is introduced in Section 2, which
contains an introduction to P2P overlays, the major
advantages of P2P MMOGs and the key challenges that
P2P MMOGs face. An introduction to some classic consis-
tency models, currently used in computer games, are
introduced in Section 3. Section 4 discusses some related
surveys that have been completed in the field of P2P
MMOGs and P2P applications in general. Section 5 contains
an analysis of different types of distributed storage for
MMOGs. The section defines characteristics against which
all storage schemes are evaluated. The section concludes
with recommendations to implementers as to the applic-
ability of the different types of storage to different types of
games. Section 6 concludes the paper by providing a brief
summary and suggesting a number of areas for future work.

2 PEER-TO-PEER MMOG NETWORK

ARCHITECTURES

In 2004, an architecture using the peer-to-peer networking
model to host MMOGs was proposed by Knutsson et al. [1].
This revealed a new research field, which attempts to
establish the P2P model as a viable alternative to the classic
C/S and Client/MultiServer (C/MS) architectures. This
architecture does, however, still have a few major issues
that need to be solved before MMOGs can be developed
that use it. If these issues, discussed in Section 2.3, can be
solved, a P2P architecture holds some powerful advantages
over a C/S system.

The core idea of the P2P model is that each peer
contributes sufficient resources to the network to host itself.
This also means that all functions of the server in the classic
C/S model are distributed among all peers. There are many
areas where the P2P model can improve on the classic C/S
mode, as will be discussed in Section 2.2.

818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

. The authors are with the MIH Media Laboratory, Department of Electrical
and Electronic Engineering, Stellenbosch University, Electronic Engineer-
ing building, Cnr of Banhoek rd. and Joubert str., Stellenbosch 7600, South
Africa. E-mail: jgilmore@ml.sun.ac.za, hebrecht@sun.ac.za.

Manuscript received 11 Mar. 2011; revised 9 June 2011; accepted 10 July
2011; published online 21 July 2011.
Recommended for acceptance by J.C.S. Lui.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-03-0144.
Digital Object Identifier no. 10.1109/TPDS.2011.210.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

2.1 Structured and Unstructured P2P Overlay
Networks

P2P networks are created and maintained in the application
layer of the Open Systems Interconnection (OSI) model
protocol stack. This application layer network is called the
P2P overlay. Peers in an overlay network might have
neighbors that have no relationship to their physical
position in the underlying network. Overlays can broadly
be classified into structured and unstructured types. The
classification is mostly based on the differing methods of
routing and content retrieval in the network. This section
only provides a brief comparison between structured and
unstructured overlays. For a detailed comparison between
the two types that also deals with many of the myths of
structured overlays, please refer to [2].

With unstructured approaches, one is never assured that
a data item will be retrieved, even if that data item is
present in the network. If many duplicates of a data item are
contained in the network, this becomes less of a problem,
since it is assumed that the request will be routed to some
set of nodes that do possess the item.

An unstructured architecture works well for content
sharing and Voice over Internet Protocol (VoIP) networks,
for example: P2P TV, BitTorrent, Gnutella, and Skype. The
reason for this is the high level of duplication in these
networks, especially for popular content. It is also easier to
perform keyword searches in unstructured networks and
the overlay requires less maintenance.

Because there is no assurance that a data item might be
retrieved from an unstructured network, especially when
that item is scarce, unstructured overlays are not considered
adequate as a basis for P2P MMOGs, where all data items
must be available at all times.

Structured overlays have been proposed that provide for
efficient routing and reliable retrieval of data items. Some of
these well known overlays are: CAN [3], Chord [4],
Tapestry [5], and Pastry [6].

The basic idea of a structured overlay is that all nodes are
identified by unique identifiers (IDs). A popular method to
create the IDs is to use hashes to a circular key space. Any
node in the overlay network is then able to efficiently route
a query with a given ID, to a node with an ID closest to the
given ID. An accurate comparison is that unstructured
overlays are good at finding “hay,” while structured
overlays are good at finding “needles” [7].

2.2 Advantages

There are various advantages to moving from C/S to P2P in
MMOGs. These include: increased robustness, improved
scalability, lower operator costs, improved handling of
transient player load, and lower latencies.

The P2P system is robust, because there is no server that
can fail, only individual peers. Individual peers failing will
not affect any other peers other than the peer that failed.
This behavior makes game down-time extremely unlikely.

Furthermore, because every peer hosts itself, the system
is scalable. Another advantage is that no extra costs are
incurred from an operator perspective, when more peers
join the network. This will also allow for efficient handling
of transient loads. If many players suddenly enter the game

no resource provisioning issues will arise, since peers
already possess their required resources.

P2P architectures also create a lot of opportunity for
independent developers, because a large initial investment
is no longer required to purchase the expensive server
hardware. Not only are hardware costs reduced, but
running costs are also reduced. The bandwidth required
by the game server is now shared among users, which
means that very little bandwidth costs will be incurred by
the provider.

Latency is also improved, because it is now possible to
directly communicate between peers and it is not necessary
to communicate via a server. There is also no single server
that has to process game events. Game events need only be
processed by other peers who find the specific events of
interest. The distribution of the load as well as direct
communication will further reduce latency. Game events
are defined in Section 3.1.

2.3 Key Challenges

A key challenge with any networked game is how to
maintain state consistency between root and replica objects.
A root object is the authoritive version of an object and the
replica object is usually a local nonauthoritive version. Root
objects are usually found on the server and replica objects
are found in the local object cache of clients. The method by
which the states between root and replica objects are
updated is called the consistency model. Solving the state
consistency problem for P2P MMOGs is one of the major
development challenges.

A recent article has identified six key challenges of P2P
systems: Interest Management, Game Event Dissemination,
Nonplayer Character (NPC) Host Allocation, Game State
Persistency, Cheating Mitigation, and Incentive Mechan-
isms [8]. A brief overview of these challenges will be
introduced below.

As shown in Fig. 1, of the six challenges mentioned,
Interest Management, Game Event Dissemination, and
Game State Persistency all form part of State Consistency,
with some aspects of Cheating Mitigation also a part of
State Consistency. Also part of state consistency is event
ordering, which deals with how to ensure that the system
remains causal [9].

Another challenge for P2P systems is the required peer
bandwidth. In a paper by Miller and Crowcroft, a packet
simulator was created to determine the required bandwidth
and effective latency, if a game such as World of Warcraft
were to be implemented using P2P technologies [10]. Their
simulation results indicate that today’s networks are not
able to host P2P MMOGs, with the required bandwidth and
latency constraints. Such a significant result requires
verification, but at the least, it shows that reducing

GILMORE AND ENGELBRECHT: A SURVEY OF STATE PERSISTENCY IN PEER-TO-PEER MASSIVELY MULTIPLAYER ONLINE GAMES 819

Fig. 1. VEN diagram showing the relationship between different
characteristics.

bandwidth and latencies for P2P MMOGs should be a
primary design requirement.

It should be noted that the overview presented here is
only an overview of the different techniques and general
trends present in the different areas of peer-to-peer
MMOGs. This overview does not presume to present an
exhaustive list of papers in these areas, rather to place the
topic of state persistency in context; to show readers how
state persistency fits into the context of peer-to-peer games
and to allow readers to distinguish between, for example,
the topics of state persistency, interest management, and
event dissemination.

2.3.1 Interest Management

Interest management is used to determine the smallest
amount of information that a peer requires, in order to
present an accurate representation of the world to players.
In consistency terms, it provides a means to determine
which replica objects require updates of the root object. The
idea is not specific to P2P MMOGs and was already
formally suggested in [11] and later with greater focus on a
distributed environment in [12].

The main idea is that a player has a limited visual range
and area around the player in which it can interact with
objects. The player requires update information of all
objects in this area, called the player’s Area of Interest
(AoI). AoI calculations also rely on the fact the a player’s
direction and velocity of movement cannot change instan-
taneously and are bounded in magnitude.

Extensive research has been done into solving AoI
problems and a comparison of techniques can be found in
[13] and [14].

2.3.2 Event Dissemination

Event dissemination deals with how information is sent to
peers after interest management determines which informa-
tion should be sent. In consistency terms, it determines how
events and updates are distributed in the network. The first
application of event dissemination for online games can be
found in [15]. Recently, Application Layer Multicast (ALM)
and unicast techniques of event dissemination have become
popular, depending on the grain of the event dissemination.
ALM is used, instead of router level multicast, because of a
lack of general support for this technology at the router
level [16].

2.3.3 Cheating Mitigation

Cheating mitigation has been identified as a major issue for
P2P systems [1], [17], [18]. The challenges reside in the fact
that peers are not under the control of the game producer.
Since all server data are distributed among peers, all peers
have access to sections of the server data. Peers also have
access to the distributed server code. One advantage that
can be exploited to prevent cheating is that no peer
contains all server data and no single peer has more
authority than another.

There are various security issues that are usually
classified according to the level in the protocol stack where
they occur. The areas identified by GauthierDickey et al.
[18] and expanded upon by Webb et al. [19] are: game level,
application level, protocol level, and infrastructure level.

This is consistent with the generally used layered security
model [20].

As with all taxonomies, all cheats may not cleanly fit into
one of these boxes, some cheats may occur over multiple
levels or a cheat with a specific outcome can be implemen-
ted differently on different levels. The field of P2P security
has recently received more attention than in the past and
has started to bear fruit [21]. This is, however, an ongoing
research field with many issues still open. For an in-depth
review of the security issues facing peer-to-peer system in
general, refer to [22]. These issues are the same issues facing
P2P MMOGs, with the exception of the game and
application layer issues.

2.3.4 Incentive Mechanisms

P2P schemes require all players to share resources in order
to ensure correct functionality. The issue with this is that
players might not want to share their resources, but still
benefit from the resources of others. This is where incentive
mechanisms become important. The function of these
mechanisms is to ensure that all players contribute
resources, by incentivised contribution.

All distributed resource sharing models require incentive
mechanisms. For example, Bittorrent systems use the tit-for-
tat protocol to ensure that all people downloading data are
also contributing data [23]. Such mechanisms are also
required with P2P MMOGs. One advantage in designing an
incentive algorithm for a P2P MMOG is that players can be
made to contribute resources for the duration of play. The
issues with file sharing systems are not present where a
peer, after downloading a file, has no more incentive to
contribute. When a peer plays a game, incentive can be
created to provide resources for the duration of the game.

2.3.5 Distributed Computation

Nonplayer Characters are characters that are not controlled
by any human player, but are rather controlled by some
artificial intelligence routine or script executing on some
host machine. These characters represent the traders and
monsters in MMOGs and usually contain sets of rules that
determine how they should interact with Player Characters
(PCs) as well as their own state information. An NPC’s state
can be how much money and items it has to trade or how
much health it still has after being attacked by a player.

In the original NPC host allocation classification by Fan,
both NPC state and computational routines are combined
into a single category [24]. In the classification presented
below, NPC state forms part of normal game state
persistency, since NPC objects are game objects like any
other. The NPC routines requiring computational power are
grouped under the heading of distributed computation.
This heading is meant to include the distribution of all in
game computational elements.

Some game objects require computational power to
function. An example of this is the Artificial Intelligence
routines of NPCs or the computation of physics effects on
in-game objects. Some architectures assume that the
computational requirements will be fulfilled where the
object state is hosted [25], but other schemes exist that allow
for the CPU power to be distributed among peers. One such
scheme makes use of a “job board” like mechanism, where

820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

tasks are advertised on specialized super peers. Other peers
monitor these super peers and may elect to perform the
advertised tasks [26].

2.3.6 Game State Persistency

Game state persistency involves the storage of game objects,
either in primary or secondary storage. In a recently
completed PhD on the subject of P2P MMOGs, Fan had
this to say about state persistency: “Game state persistency
is a major challenge for P2P MMOGs as existing P2P storage
infrastructures are designed to support file sharing, and
seldom fulfill the performance and security requirements of
a MMOG. . . . the persistency area is still immature with
many problems waiting to be investigated.” [24].

State persistency is treated as a subdomain of state
consistency, in that state persistency models define where
and how the root or authoritive objects are stored. It is
assumed that replica objects are always stored in the
primary memory of the clients that immediately require
the information contained in the root object.

The issue of game state persistency in P2P MMOGs is
the focus of this paper and the remainder of the paper will
deal exclusively with this subject. However, before the
different storage types are reviewed, some classic C/S
models are presented for comparison with the fully
distributed model.

3 CLASSIC CONSISTENCY MODELS

A game object exists in two forms: the root object and the
replica object. Root objects are the objects traditionally
housed on the Server in the C/S-based MMOGs. All clients
obtain replicas of these objects and duplicate them locally in
order to perform low-latency computations. An example
would be an NPC monster. When players perceive the
monster in the virtual world, a duplicate of the NPC objects
is sent to the user’s computer for display purposes. When
another player attacks the NPC, the change in health will be
computed at the server and an update is then sent in order
to ensure consistency between root and replica objects.

3.1 Terminology

To understand consistency models, some basic terms
should first be understood. These terms are: “event,”
“update,” “game state,” “game logic,” and “game object.”

Events. Events are generated by players and can be
thought of as actions taken by players. These include
casting a spell, using an item or walking.

Game Logic. Game logic is applied to events to determine
what updates should be applied to the game state. Game
logic is thus a “think” function, which determines how the
world should change as a result of an event. Another way to
think about game logic is to see it as the game rules. A
player casting a spell might cause another player’s health to
be reduced, her own health to be increased or a monster to
spawn. When a player is walking, the logic will cause the
player’s position to update at the player’s walking speed.

Update. Game logic communicates how the world
should change via game updates. Game updates are the
incremental changes that specify how the game state
should change.

Game State. The state of the game is the positions, health
and all other attributes of all players, NPCs, and game
objects in the game world. Game state consists of a

collection of game objects. An NPC as well as an immutable
plant are both examples of game objects that together make
up the game state.

Game objects. When discussing how to segment game
state, it is sometimes easier to speak in terms of game
objects, since they are separable. For the purposes of this

work, game objects are objects with both state and logic,
which means they consume both storage space, as well as
CPU power. Game objects can also produce events, which

should be sent to other objects. When this definition is used,
NPC objects may be classified as a specific type of a game
object, which forms part of the global game state.

As an introduction to consistency models, an overview of

the two common models, currently used in computer games
will be described. The models used in P2P MMOGs are all
permutations of these two basic models. The two models

are based on the two different network models. These are
the fully distributed model, also called the event-based

model [27], and the C/S-based model, also called update-
based model [28].

3.2 Event Based (Fully Distributed)

Fig. 2a shows the fully distributed model. The state
persistency model for this consistency model is that the
complete game state is stored on each peer. Any event that

a peer generates is sent to all other peers. These events are
used as inputs to the game logic, which creates updates,
which are then used to update the global game state at

each peer. The event-based model works well for strategy
games, and was implemented in Age of Empires [27] and
Starcraft [29].

The order in which events are received should be the

same for all peers, otherwise the game states of different
peers may become inconsistent. Usually some kind of
lockstep technique is used to solve this issue [30]. The issue

with lockstep is that it reduces the latency to twice that of
the peer with the highest latency. Various techniques have
been proposed that improves the latency by introducing

some deadline before which all events should be submitted
[18]. This, however, makes it impossible for a player with a
high latency to play the game with anyone other than from

her own continent. When latency issues are not present and
all players possess reasonable latencies, the event-based

model can provide for a high degree of responsiveness,
because of no extra latency being added by a server and no
extra server hop required for communications.

The issue with the event-based model is that it is not

scalable, since all peers should connect to all other peers
and every event is transmitted to everyone. This means that
as N , the number of peers in the network increases, the

traffic increases with a factor of N2. The security issues of
the fully distributed network model, on which this
consistency model is based, are also present. Slowdown is

also experienced by all players if one player’s latency is
below par, since the lockstep mechanism has to wait for all
events to be received for that round to conclude.

GILMORE AND ENGELBRECHT: A SURVEY OF STATE PERSISTENCY IN PEER-TO-PEER MASSIVELY MULTIPLAYER ONLINE GAMES 821

3.3 Update-Based (C/S)

An alternative to the event-based model is the update-based
model, shown in Fig. 2b. This model is based on the C/S
network model. The persistency model here is that an
authoritative global game state is housed on the server and
a nonauthoritative local game state is housed on all clients
for display purposes. No real game logic is housed at the
clients, only on the server. All clients send events to the
server, which applies the game logic and sends updates to
the clients, while also updating its own game state.

This approach greatly assists with security, as clients
cannot influence the state of any other clients and every
client’s state depends on updates received from the server.
The server state is also termed authoritative, because if
there is a conflict, the server state is always the state to
which the system is expected to return. All security
advantages of the C/S model also apply to this consistency
model. Another reason why the update based model is
successful is because it is more scalable then the fully
distributed model. More hardware can be used to build a
more powerful server, which can handle more clients.
Computer clusters and large server are, however, costly to
obtain and maintain.

The update-based model is used in many, if not all,
MMOGs currently in operation. This includes games like
World of Warcraft, Eve Online, and Ultima Online, to name
just a few.

3.4 Client/Multiserver Consistency Models

Apart from the two classic models, there are also models
based on the C/MS network model, which are: shard-
based, replication-based, object-based, and zone-based [31].

3.4.1 Sharding

The consistency model that is exemplified by having a state
persistency model where the game state (world) is
duplicated over multiple servers, with players connecting
to one of these servers is termed “sharding.” Clients are not

able to interact or communicate with players on other
shards, which reduces game immersion. This method does,
however, allow for a more scalable system as maximum
load is fixed.

Players are not able to enter a shard if that shard has
reached its capacity. In the past, this has caused unhappi-
ness among players, since popular shards could be difficult
to log in to. Players are also reluctant to move to a new
shard, because a lot of time is invested in their characters in
their “home” shard. Sharding doesn’t allocate resources
efficiently, as one shard may be overpopulated while
another is underpopulated. For all practical purposes, this
approach is still merely a C/S approach, with players
forced into a specific C/S environment.

The benefit of sharding is its ease of implementation and
the reduction of content designer load. Because no inter-
server communication is required and no server migration
is supported, this method greatly simplifies the server
design process. Another benefit of sharding is that it allows
for a relatively small game world to support many players
because of the duplication of the worlds. This reduces the
load on level designers and content designers, who now
have to populate a much smaller world with content.

3.4.2 Replication-Based

The replication-based model is similar to sharding, with the
difference that all servers share the same duplicated game
state. Each server contains the global game state and clients
connect to any one of these servers (mirror servers [32]) or
through a load distribution algorithm to a server (proxy
servers [33]). Each server handles all actions from clients
and updates its own database. The servers in turn send
updates to each other over a high-quality link, such as fibre,
to maintain database consistency at high speeds.

The problem with this system is that the world is never
truly consistent and that there are no optimally chosen
inconsistency obfuscation boundaries. In other words, two
players standing next to each other in the virtual world,

822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

Pe
er

Gl
ob
al

Ga
me

St
ate

Ga
me

log
ic

St
ate
up
da
tes

Peer

Global
game
state

Game
logic

State updates

Peer

Global
GameState

Gamelogic

State updates

EventsEv
en
ts

Events

(a) Event-based (fully distributed)

Client

Local
gamestate

Clientlogic

State updates

Server

Global
game
state

Server
logic

State updates
Events

Updates

Ev
en
ts

Up
da
te
s

Cl
ien
t

Lo
ca
l

ga
me

sta
te

Cl
ien
t

log
ic

St
ate
up
da
tes

(b) Update-based (client/server)

Fig. 2. Consistency models.

might be on different servers and, therefore, experience two
slightly different worlds.

3.4.3 Object-Based

The state persistency model of the object-based consistency
model equally distributes all in-game objects among the
servers [34], [35], [36]. For an MMOG, most of these objects
are expected to be player objects. The advantage of this
method is that the system load is fixed for a certain player
population and that the load is equally distributed among
all servers. This allows for more accurate prediction and
provisioning of resources, but still does not handle transient
loads well.

Another issue is interserver communications for this
architecture. The interserver communications are random
and also more than the interserver communications for a
region-based system. The reason for this is that the number
of player interactions increase with a decrease in the
distance between the players. Players playing together
move together, chat, and interact with NPCs together. For a
region-based model, all player-neighbor interactions remain
local to the server.

3.4.4 Zone/Region-Based

The state persistency model of the zone-based consistency
model divides the virtual world into zones or regions,
which are hosted on different servers [37], [38]. A well-
known example of this model is Eve Online. Busy regions
are hosted on their own servers, while multiple quiet
regions are hosted on a single server. This is termed the
static region approach [37].

The issue of the static region approach is that it does
not scale well when one region is suddenly populated
with players. This type of behavior happens quite
regularly and is known as flocking [39]. When players
find something of interest in a region, many players will
flock to that region. The solution to flocking has been
overprovisioning of resources to handle peak loads, which
suffers from the disadvantages discussed above. Also, if
the load changes, the server has to be brought offline in
order to balance the regions.

Dynamic regions are being investigated, where regions
can be dynamically shifted from one server to another, in
order to balance load [38]. This approach adds overhead
and significant complexity with regards to the migration of
the data and the handling of player actions while the data
are in transit.

4 RELATED WORK

In this section, we discuss related surveys on P2P MMOGs.
This will set the context for the discussion on state
persistency for P2P MMOGs.

In 2007 Schiele et al. published the paper: “Requirements
of Peer-to-Peer-based Massively Multiplayer Online Gam-
ing” [40]. This paper presents a broad overview of some key
requirements that P2P MMOGs should possess, to function
correctly under any load for any period of time. These are:
distribution, consistency, self-organization, persistency,
availability, interactivity, scalability, security, efficiency,

and maintainability. The focus of this paper is on the
persistency requirement identified in the paper by Schiele.

In 2005, Hasan et al. published the manuscript: “A
Survey of Peer-to-Peer Storage Techniques for Distributed
File Systems” [41]. The manuscript describes different
techniques used to store data in a distributed fashion. The
difference between the paper by Hasan et al. and this paper
is that this paper focuses on storing data for gaming
applications, which have other requirements than normal
file storage. The contents of the paper by Hasan et al. is also
encapsulated in the overlay storage section of this survey.

Krause presented “A Case for Mutual Notification: A
survey on P2P protocols for Massively Multiplayer Online
Games.” [14]. The protocols discussed in this survey
focused on the areas of interest management and event
dissemination. Three protocols were presented: “Applica-
tion Layer Multicast (ALM)-based protocols,” “Supernode-
based protocols,” and “Mutual notification-based proto-
cols.” The first two protocols deal with region-based
interest management techniques that employ supernodes,
also called super peers, and ALM to achieve state
consistency. The third protocol, which is presented as an
alternative to region-based techniques, is a distance-based
technique, making use of Voronoi diagrams to achieve
state consistency.

While the survey by Krause is also in the area of P2P
MMOGs, it deals with the topics of interest management
and event dissemination and not with the topic of state
persistency. In other words, it explains how updates to
objects may be sent to earlier versions of an object, but not
how these objects may be stored.

Webb and Soh presented “A Survey on Network Game
Cheats and P2P Solutions” [21]. The paper introduces a
cheat classification scheme, defining different “levels” of
cheating, along with some examples of cheats in each level.
For each example given, the authors also discuss possible
solutions to these cheats. The difference between this paper
and the survey paper presented by Webb and Soh, is their
paper deals with securing the information stored in objects
as well as securing updates made to objects, while this
paper deals with storing those objects.

The previously mentioned articles deal with other issues
present in P2P MMOGs, namely interest management,
event dissemination, and security. The paper by Amoretti:
“A Survey of Peer-to-Peer Overlay Schemes: Effectiveness,
Efficiency, and Security,” provides details of the broader
area of P2P overlay schemes [42]. The paper focuses on
security issues present in P2P overlay schemes, while also
introducing hybrid, unstructured and structured overlays,
and provides an extensive list of applications of the
different schemes in different areas.

Three areas present in Amoretti’s survey and also related
to this survey are: “Content sharing,” “distributed storage,”
and “gaming.” The content sharing technologies described
in Amoretti’s work are considered forms of overlay storage,
further discussed in Section 5.3. While Amoretti’s survey
gives a broad description of P2P gaming in general and why
it should be a viable alternative to a C/S system, this survey
deals specifically with the area of P2P MMOGs and more
specifically, with state persistency in P2P MMOGs.

GILMORE AND ENGELBRECHT: A SURVEY OF STATE PERSISTENCY IN PEER-TO-PEER MASSIVELY MULTIPLAYER ONLINE GAMES 823

5 PEER-TO-PEER MMOG STATE PERSISTENCY

MODELS

This section identifies state persistency techniques used in
P2P MMOGs. To achieve state persistency in P2P

MMOGs, a type of distributed storage is required. Two

classic distributed storage architectures are the Network
File System (NFS) [43] and Coda [44]. There are, however,

some major differences between the requirements of a
P2P state persistency model and the classic distributed file

storage model.
First, NFS and Coda still require servers. One of the main

advantages of P2P MMOGs is that servers are, for the most

part, not required. The other requirement is low-latency file

storage and retrieval, which NFS and Coda also do not
address. Conflicts are also an issue with the Coda system,

which allows multiple nodes to modify the same object.
Despite the many differences, the divergent applications

share some of the same requirements, including: scalability,
reliability, security, and responsiveness.

The requirement of disconnected operation is generally

not applicable to most interactive online games, where a

player has to stay connected to the world, to be able to
interact with it. One area where disconnected operation

might be of interest to game state persistency is in the area
of mobile gaming. A major challenge for mobile games is

the large variances in network latency. Such networks
require games that are resistant to network jitter.

One approach has been proposed in [45], where every

game client serializes its game state and distributes this

game state to all other clients. Each client then creates some
target game state from all received game states as well as its

own state. The game client then attempts to manipulate all
NPCs in the game in order to achieve the target game state.

The target game state is constantly updated and thus
remains a moving target. This is a new type of consistency

model with many research opportunities.
Four approaches have been identified by which state

persistency is achieved in P2P MMOGs: super peer storage,
overlay storage, distance-based storage, and hybrid storage. These

four storage architectures are detailed in Sections 5.2, 5.3,
5.4, and 5.5.

Two other types of storage sometimes described in P2P

MMOGs papers are centralized storage and individual storage.
Centralized storage is storage in a centralized database, the

same as for a C/S MMOG [46], [47], [48]. Centralized

storage for an MMOG requires the same large expensive
servers and high bandwidth as required by a classic C/S

architecture and therefore does not fit into the P2P MMOG
paradigm. For this reason, centralized storage will not be

evaluated in this paper.

With individual storage, player data are stored on a
player’s own computer [49], [50]. These architectures do not
address the storage of NPC state or mutable objects. These
objects cannot be as easily mapped to a single node in the
network as player state can and therefore require a
mapping mechanism to decide where to host these objects.
Individual storage will not be explicitly discussed in this
survey, however, individual storage can be regarded as a
subset of distance-based storage, which will be discussed in
detail in Section 5.5.

Table 1 presents a characterization of current storage
systems according to the characteristics defined in Section 5.1.
Table 1 also provides some references that act as examples of
the different storage types mentioned. These example
architectures will be discussed in detail in the sections to
follow. The purpose of the complexity category in Table 1 is to
provide a measure of how difficult it will be for an application
developer to use any of the storage types and is discussed in
Section 5.6.

5.1 Characteristics

The key challenges related to P2P MMOG persistency
models identified during this literature study were:
scalability, reliability, responsiveness, security, and fairness.
All state persistency models will be reviewed with these
characteristics in mind. In order to evaluate any persistency
model, metrics have to be defined to measure the key
characteristics of a storage system. This will allow for
different persistency models to be compared and provide a
measure of the applicability of any persistency model to
P2P MMOGs.

5.1.1 Scalability

Scalability underpins all evaluation criteria. This implies
that for a system to be scalable, all other evaluation criteria
should be satisfied for large numbers of nodes and data. For
this reason, scalability will not be explicitly reviewed in the
following storage types. Rather, all other evaluation criteria
will be evaluated for a large number of nodes, thereby
taking into account scalability.

The question of what constitutes a large number of
nodes arises. To establish what an adequate number of
nodes is, current MMOG architectures can be used for
inspiration. It is proposed that to classify a system as
sufficiently scalable, the smallest number of peers that
should be used is approximately 3,000. This is the number
of players per server, currently supported by most active
C/S MMOGs. For a system to be classified as truly
scalable, it is believed that the architecture should support
60,000 concurrent users, 20 times more than a sufficiently
scalable system. This is the number of peak concurrent
users (PCUs) currently supported by the super computer

824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

TABLE 1
Differences between Storage Mechanisms

used to host Eve Online [58]. These two measures will
ensure that a system is as scalable as other currently
available architectures.

For systems that will support the MMOGs of the future,
it is believed that a target of 1 million nodes should be
used. This number is 16 times that of a truly scalable
system and the peak concurrent player count of World of
Warcraft in China in 2008 [59]. Systems that will support
these numbers can be classified as highly scalable. It is
important to note that no current systems support such a
large PCU count on a single server cluster. The PCU count
presented for WoW is the PCU count over all server
clusters hosting WoW in China.

5.1.2 Fairness

Ensuring fairness in the system means distributing load
evenly according to the abilities of individual nodes. This
ensures that not only a small number of nodes provide all
system resources required for the system to function, but
that all nodes contribute what they can, in order to support
the system.

Fairness can be evaluated by evaluating the distribution
of game state among all nodes in the P2P network. This can
be measured at a file level, i.e., what is the variance of the
number of files contained on each node, or on byte level,
i.e., what is the variance of the number of bytes stored on
each node. A lower variance will point to a fairer data
persistency scheme.

5.1.3 Reliability

For the storage to be reliable, it must be impossible for data
to be lost, and stored data should always be available when
a node requests it. Reliability encompasses both robustness
and availability. Robustness means that the data should be
resilient to network churn and availability means that data
should be available to any node in the network, with the
correct permissions.

5.1.4 Responsiveness

To ensure system responsiveness, data must be stored or
retrieved in real time. With real time, it is meant that data
should be available within a certain time frame that
would ensure correct functionality of the MMOG requir-
ing it. The variance in data retrieval times should be
small. Responsiveness can be measured by the time it
takes for an object to be available for reading, anywhere
in the network, after having been written. How long it
takes to read or write data to the storage network can also
be measured.

5.1.5 Security

The storing system should store data securely. It should not
be possible for data to be altered in ways that are
inconsistent with the game rules. It should also be possible
to identify nodes that alter the data in a malicious way. This
also adds the requirement that nodes should be authenti-
cated in the storage system and that only authorized nodes
should be able to alter data. Security is the combination of a
number of objectives: Authentication, Authorization, Data
Integrity, Confidentiality, Availability, Trust, Privacy, and
Identity Management [20].

For a state persistency model to address the security
objectives of authentication, authorization, confidentiality,
trust, privacy, and identity management, a certification
scheme with public and private key encryption is
required. Such a scheme allows for the identification of
users, and by having users sign any storage interactions,
every change made to the storage system can be tracked.
This is a major differentiating factor from classic dis-
tributed storage systems such as Freenet, where a primary
objective is anonymity. If all operations are logged and all
users have to be identifiable for a secure system, no users
can truly be anonymous.

5.2 Super Peer Storage

Super peer storage relies on the super peer storing all
information that is in its domain. A domain is usually
created by segmenting the world into regions and super
peers act as regional servers to all peers in their region. Each
super peer handles all game logic and distributes updates to
all peers in its region. The super peer also handles state
persistency for its region, hosting NPCs, objects, and
persistent player data.

The consistency model for this approach is depicted in
Fig. 3. One can see that this approach is modeled on the
update-based model, but segmented into separate regions.
The role of the server is here fulfilled by a super peer, which
is a peer that is selected in some logical way, from the
available set of peers and then promoted. Server selection in
itself is a complex topic that has to deal with determining
whether a peer has sufficient resources available and also
whether the peer is trustworthy.

Each super peer in this model houses the complete
region state as shown. Super peers also house the game
logic. Clients in the region only house copies of the regional
objects and some client logic to update the local copies of
objects. Like the C/S model, clients only send events to
super peers, where super peers apply the game logic and
send state updates to clients.

5.2.1 Fairness

The super peer storage model has many potential issues.
Overloading of the super peer is one. A super peer could be
relatively easily overloaded if a region becomes too
crowded, since a super peer is merely the computer of
some player in the game and not a specialized server
machine. The question of fairness also arises. The idea of a
P2P MMOG model is that all peers share resources. With
this model, peers with extra resources are expected to
donate these resources for the good of all. Players might
consider it unfair, when they are constantly expected to
donate resources, some of which they might have to pay for,
while other players never contribute.

In a system with lower fairness, the individual user load
is also higher for those users that do have to contribute
resources. This means that in an unfair system, the users
that do have to contribute, have to contribute more than
what they would have, were it a fair system.

5.2.2 Reliability

In a P2P system, with a high rate of churn, players are
expected to constantly leave and join the network. Because

GILMORE AND ENGELBRECHT: A SURVEY OF STATE PERSISTENCY IN PEER-TO-PEER MASSIVELY MULTIPLAYER ONLINE GAMES 825

of this reality, redundancy mechanisms have to be devel-

oped that would ensure state data are always available,

even when a super peer leaves the network. It is possible to

solve these issues by having redundant super peers in each

region that take over hosting responsibility when the main

super peer leaves.
It is important that the main and backup super peers

always possess consistent states, even during a transition

from main to backup. Other schemes to support improved

reliability deal with reputation mechanisms for super peers.

Super peers that have more resources and stay in the

network longer are preferred during super peer selection,

using reputation mechanisms [26].

5.2.3 Security

Probably the most important issue is that of security. If a

single peer is allowed to house the player information of a

large group of players, it might become possible for such

a peer to maliciously modify the data. The issue is not

only that modification of the data might be possible, but

also that it would be impossible for the cheating to be

detected, because of no centralized logging. Locally

obtaining access to data will circumvent the protections

created by a certification system, which would then pose a

threat to all security objectives protected by the certifica-

tion system as mentioned in Section 5.1.5.
A scheme that would improve the reliability of this

systems has been proposed, where every event is also sent

to the backup super peer of the region [53]. The main super

peer responds with the update and the backup super peer

responds with a hash of the update. A peer can then check

whether the hashes match to determine whether the data

have been received correctly. A hash is not the state update

itself, so will be smaller, but the events that have to be sent

to all super peers will increase traffic in the network and

bandwidth usage by peers.

5.2.4 Responsiveness

There are also advantages to super peer storage. All data
are stored on the super peer, which means that storing data
is a low-latency operation. The regional state can be stored
and retrieved at high speeds, making the system very
responsive. Data retrieval from such a storage is as fast as
data retrieval from a server. Peers can request data from a
super peer and the data can be returned to the peer in one
hop after transmission of the request. Super peers may,
however, become overloaded with requests and thereby
increase the latency of the system.

5.2.5 Existing Architectures

Knuttson et al. [1] employ regional super peers called
“coordinators,” to host all shared object states. The
coordinator is chosen as the node whose ID is closest to
that of the region ID. The region ID is a SHA-1 hash of the
region’s textual name [60]. This mapping makes it unlikely
that the coordinator will be a member of the region. The
advantages of such a selection scheme is that the opportu-
nities for cheating are reduced, because the data are hosted
on a peer that has no or little interest in the data, as
described in Section 5.5.3.

Coordinator handoffs also occur less than if the
coordinator was an elected member of the region. If this is
the case, a new coordinator has to be chosen every time the
current coordinator leaves the region. In this scheme,
handoffs only occur as a result of network churn, which is
far lower than the number of players moving from one
region to another.

Reliability is achieved by maintaining backup coordina-
tors as the Distributed Hash Table (DHT) neighbors of each
region coordinator. One method by which redundant
region coordinators are maintained in [1], is to create
backup coordinators on peers with IDs closest to the current
coordinator. This means that if the main coordinator fails,
all data will automatically be routed to the backup, because
of the feature of DHTs. This method is similar to how

826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

Fig. 3. Region-based Client/Server consistency model.

reliability is achieved in overlay storage as described in
Section 5.3.1.

5.3 Overlay Storage

Overlay storage is classified as using any type of structured
P2P overlay to store data in a distributed fashion. This is a
very broad definition, which basically encompasses any
P2P distributed storage currently in use. Some examples
and a comparison of different distributed storage techni-
ques can be found in [41]. The reasoning is that any P2P
distributed storage can be used to only store game files.
Therefore, distributed storage is used as a distributed
database for game files. Whether this is an optimal solution
will be discussed in the remainder of the section.

5.3.1 Reliability

Overlay storage can be made reliable, using redundancy. One
method used to achieve high reliability in structured overlay
storage is to store k replicas for any file stored, in order to
ensure the availability of the file. These replicas are stored at
the neighboring nodes of the node containing the original file.
Neighbors are the k nodes whose IDs are closest to that of the
root node. By the characteristics of DHT distance-based
routing, if the node with the original data leaves the network,
packets will automatically be routed to the neighboring node,
which stores a duplicate. This technique ensures high
availability of data and the number of duplicates can be
chosen according to the reliability of the network.

5.3.2 Responsiveness

The most significant issue with overlay storage is the delay
incurred when storing and retrieving data. As data can be
stored anywhere on the network and the network is not
fully connected, an average of OðlogðNÞÞ hops are required
to retrieve or store a data item [61]. Although this is a
sufficient order complexity for a routing algorithm in a
large network, it is not sufficient to support a real-time
application. For responsive MMOGs, a distributed file
system is required that allows for real-time file storage
and retrieval.

The mechanism by which churn is handled, described in
Section 5.3.1, also improves responsiveness. This is
achieved, because IDs created by the random hash function
ensures that a node’s neighbors are distributed randomly
throughout the P2P overlay. This random distribution
ensures that file replicas, stored at a node’s neighbors, are
uniformly distributed throughout the P2P overlay network.

5.3.3 Security

The overlay storage model is more secure than the super
peer storage model as data are distributed among all
peers and redundancy and quorum techniques can be
implemented to ensure that files are retrieved with a high
level of security.

To ensure a secure system, copies of files have to be
saved at different locations. If a file is retrieved, all copies
must be queried and received. All received copies then have
to be compared to ensure that the contents are correct. This
introduces additional network overhead as well as addi-
tional load on nodes to serve as file copies.

The network overhead can, however, be reduced by
having file replica nodes only send hashes of the files,
which may then be compared at the requesting node.
Hashes require less bandwidth, while still allowing a
requesting node to check update validity by hashing the
received update and comparing with the received hashes.

5.3.4 Fairness

Overlay storage is fair, as all nodes share file data and
requests equally. The system might be made fairer by
taking into account the heterogeneity of peers. Peers do not
all possess the same resources, something which a truly fair
system should take into account. The difficulty with using
such a scheme is that peers can be made to report incorrect
resource information in order to reduce their resource
donation requirement. This is where incentive mechanisms
have to be investigated as well as ways to ensure correct
resource reporting.

5.3.5 Existing Architectures

In 2004, Merabti and El Rhalibi mention the issue of “Data
Storage” [52]. It is recognized that a distributed storage
scheme is required and that such a scheme “. . . requires
careful designing . . . ” They propose the use of a data
storage architecture based on the Freenet project [62].
Freenet is a distributed storage facility that uses a Darknet
to ensure user anonymity when distributing files. A system
such as Freenet is designed for general file sharing, which
means that no focus is placed on achieving the high levels of
responsiveness required for MMOGs. While the need for
state persistency is briefly mentioned in the 2004 paper by
Marabti and El Rhalibi, Douglas et al. implement a
workable solution for state persistency in 2005.

Douglas et al. designed a P2P MMOG architecture in
2005 [51] and implemented state persistency using a
distributed storage implementation, which they developed
in 2003 [63]. The storage system allows for the manipulation
of spatial data, while also implementing range queries. This
enables the system to store and retrieve data that exist in a
certain area of the game world. In the MMOG architecture
they developed, state persistency is implemented by the
“Spatial Data Service” (SDS), which is a distributed storage
architecture that uses the Chord P2P overlay for routing [4].

PAST has become a popular way to implement state
persistency. This is the approach proposed by both Hampel
et al. in 2006 [53] as well as Fan in 2009 [24]. In these
publications, it is said that PAST is used to store the global
game state, but never is detailed what is stored and how
regularly it is stored. Player information is supposed to be
stored as game state, but from the papers it is unclear how
position updates are handled. It is not clear whether the last
position of a player is stored at all or how regularly it is
stored. It is important to know how position updates are
handled in the game, since position updates are the most
common type of update [1].

PAST has not gained much commercial adoption,
because of the lack of support for keyword searches, which
is a requirement of most distributed storage networks,
where users constantly search for content. Keyword
searches are, however, not required by the storage mechan-
ism of an MMOG. The IDs of the items stored in the

GILMORE AND ENGELBRECHT: A SURVEY OF STATE PERSISTENCY IN PEER-TO-PEER MASSIVELY MULTIPLAYER ONLINE GAMES 827

network will be known. A player’s inventory can, for
example, always be called (player_name)_inventory.
A hash of this file name will find the correct file. This, and
the use of Scribe, is why PAST has become popular with
researchers of P2P MMOGs.

PAST [64] uses Pastry to implement a distributed storage
system. Files that have to be stored are given IDs, by using
some hash function, for example, SHA-1 [60]. The file, along
with the ID are sent as a message over the overlay. The
messages is then routed to the node whose ID is a closest
match of the file ID, where the file is stored. If any nodes
wish to retrieve the file again, it only requires the file hash.
A “get” message can be sent to the overlay, where the
overlay will route the message to where the file is situated
and retrieve the file.

In an effort to increase responsiveness, PAST also
employs caching techniques [61]. If a node forward many
queries for a file, that node can elect to cache the file to
improve the responsiveness of the system. This caching can
only occur if the node has space available. If a node has
cached a file and another file is explicitly inserted into the
node, it can elect to remove the cached file in order to free up
space. This means that the success of the caching mechan-
ism is directly related to the level of storage utilization.
Higher utilization will prevent files from being cached.

The main difference between the implementation by
Douglas et al. and the PAST implementations, is that the
former supports range queries on spatial data, which allows
for a set of objects to be returned, queried by their virtual in-
game position. With PAST, the exact ID of an object is
required before it may be retrieved. Using PAST is the
simplest means by which game state persistency may be

implemented, but PAST is not necessarily the application
best suited to game state persistency. There exists a need for
more research into appropriate state persistency mechan-
isms for P2P MMOGs.

5.4 Hybrid Region-Based Storage

Fig. 4 shows a type of Super Peer/Overlay hybrid storage
implemented in [54]. The model depicted in Fig. 4 uses an
overlay storage, managed by regional super peers. The
world is divided into regions, with each region controlled
by a super peer. The complete region state is cached at
every super peer, the same as with super peer storage.
There also exists a backup overlay storage architecture, to
which data may be backed up for long term, redundant and
secure storage. The hybrid region-based overlay storage
contains many improvements over pure overlay storage as
will be discussed in the following sections.

5.4.1 Reliability

Because of the use of overlay storage for backup, the hybrid
region-based storage is almost as reliable as a pure overlay
storage. It is classified as almost as reliable, because there is
a delay between when data change and when it is updated
in the overlay. If a super peer fails during this time and the
data were not backed-up to the overlay, that data could be
lost. Backup super peers can, however, be implemented as
described in Section 5.2.2 to improve the reliability of the
hybrid storage model.

5.4.2 Responsiveness

Because all regional files are cached at super peers, the
system is as responsive as super peer storage.

828 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

Fig. 4. Hybrid region-based super peer storage with backup overlay storage consistency model.

5.4.3 Security

Security in hybrid storage is still an issue, because of the
inherent problems of the super peer storage model.
Although it is more difficult for nodes to access and
manipulate data stored in the overlay, a malicious node
promoted to super peer status may manipulate the region
data it controls.

It does seem possible to achieve higher levels of
security, by checking data received from super peers,
against the data stored in the overlay. Care should be taken
with such a scheme, because the rate of change of data at
the super peers might be higher than the rate that data are
submitted to the overlay. Another issue is the time delay
between data received from a super peer and data received
from the overlay.

5.4.4 Fairness

The issue of unfairness is also still present in hybrid storage.
The system is fairer in that all nodes share the load of the
overlay storage, but there still exists the unfairness of the
super peer storage. As all data exists in both the overlay
storage as well as the super peer storage, the system is as
unfair as super peer storage, because the same quantity of
data as in super peer storage is not being distributed evenly
among all nodes.

5.4.5 Existing Architectures

The first hybrid state persistency model for P2P MMOGs
was proposed by Iimura et al. in 2004 [54] and called the
“Zoned Federation Model,” shown in Fig. 5. The regional
super peers are called “Zone Owners,” which handle all
events by clients in their zone or region. In the Zoned
Federation model, a Zone Owner acts as the primary
storage medium for all object states in the zone or region.
As shown in Fig. 4, this is analogous to an update-based
model, divided into zones. The difference here is that the
game state of all zone owners are regularly backed-up to
overlay storage. The zoned federation model can thus be
seen as a super peer/overlay storage hybrid. The super
peers storage provides for low-latency data storage and the
overlay storage provides security and reliability.

An extended abstract, published by GauthierDickey et al.
in 2004 [55], proposed to distinguish between permanent
and ephemeral data. Permanent data are described as data
that should exist at all times and ephemeral data are
described as data that need only exist for as long as its

owner is in the game. An item, being dropped by a
dispatched NPC, can be considered as ephemeral. When the
peer on which the data are hosted leaves the area, that item
can disappear. An example of permanent data are a player’s
inventory contents, which can further be classified as
participatory data or a player’s house, which can be
classified as existential data. Participatory data are data
that need only be available when a specific player is in the
game and existential data are data that should be available,
even when a certain player is not present in the game.

Categorizing data by how long and under which
circumstances the data should exist, may assist in the
design of the storage model. Since ephemeral data do not
have to exist after the player has left the game, it may be
stored in primary memory. Participatory data might also be
stored on the player’s computer, but security issues will
have to be kept in mind. Existential data will have to be
stored somewhere other than on the player’s computer,
since other players will require the data, even in the absence
of the player that might have left the game. GauthierDickey
et al. did not explore how their data classification scheme
might be translated into a state persistency model.

5.5 Distance-Based Storage

Distance-based approaches, such as the Voronoi storage
approaches [56], [31] and some more general approaches
[57], [25], store object data on the peer closest to the object in
the virtual world. Some distance metric is used to determine
on which node an object should be stored.

Given a set of points, the Voronoi diagram of the set of
points is the partition of the plane, which associates a region
around every point in such a way that all other points
contained in the region are closer to the center point than
any other point in the set. Fig. 6 shows a Voronoi diagram,
where the lines define the region boundaries, the dots
define the players, which make up the set of points for
which the diagram was calculated, the plus signs represent
mutable objects and the circle represents the AoI of a central
point in the set.

For the Voronoi approaches, described in more detail in
Section 5.5.5, a node controls and hosts all objects within its
Voronoi region. The reasoning is that there is a high
probability that the player closest to the object is also the
player using the object. Examples of this are where a player
is trading or fighting with an NPC.

GILMORE AND ENGELBRECHT: A SURVEY OF STATE PERSISTENCY IN PEER-TO-PEER MASSIVELY MULTIPLAYER ONLINE GAMES 829

Fig. 5. Zoned Federation Model [54].

Fig. 6. Voronoi Diagram [56].

5.5.1 Responsiveness

An issue with the above reasoning is that multiple nodes
are usually interacting with a single object. The examples of
the NPC monster and trader are again relevant. Usually
many players interact with a trader NPC and usually
players attack monster NPCs in groups.

Multiple player interactions are, however, not as big an
issue as others have suggested [8]. In the best case, the
object being used by a player is also hosted on that
player’s node. If another player requires use of a remotely
hosted object, that player may still interact with the object,
where the host node is now acting as a server to that
player. This means that every player hosting an object
becomes a server for that object. In the case where a player
interacts with an object hosted locally, there is no object
latency. In the case where a player accesses a remotely
hosted object, there is only one hop latency, the same as
with a C/S or super peer application.

Issues with this approach stem from the fact the players
are constantly moving. When players move, the objects in
their regions change. Objects, therefore, have to be con-
stantly handed over from one peer to another, which might
cause significant network traffic. An object in transit might
also delay interaction with that object. Because object
transfer introduces overhead into the system, how regularly
an object has to be transferred and whether the number of
transferals produce sufficiently low overhead to implement
a real-time game, still have to be investigated.

Voronoi-based storage schemes also become unrespon-
sive when communications are no longer between neigh-
bors, but between two arbitrary nodes in the Voronoi
overlay. When such communications occur, the average
required time to route a message is OðN1=2Þ for a two-
dimensional configuration. Advancements have been made
that suggest augmenting the Voronoi overlay with addi-
tional links to far off nodes to create a small world network.
This reduces the average routing time to Oðlog ðNÞÞ, the
same as for overlay storage [65].

5.5.2 Reliability

Reliability, because of network churn, is still an issue.
Nodes will leave the network whenever a player stops
playing the game, which makes it a common occurrence.
When nodes leave the network, the objects that are stored
on that node should still be accessible to other players. This
will require transferring all objects contained in the leaving
node to another object, still present in the network. No
papers have yet dealt with the issue of reliability in a
distance-based storage network.

The same solution that is used for overlay storage,
namely the presence of redundant peers, might also be
implemented for distance storage. Another structured
overlay might be used to implement this redundancy in
exactly the same way it is done with hybrid storage
mentioned in Section 5.4.1.

5.5.3 Security

The main issue with the distance-based scheme is security.
Nodes that have the most interest in an object also have the
most interest to manipulate that object in ways inconsistent

with the game rules. When objects are hosted on nodes that
have the most interest in them, there will be a strong drive
to try and manipulate these objects. Because these mod-
ifications are all local, it is also not possible to log the
alterations and detect cheating. Means by which local
objects can be secured have to be found or distance-based
algorithms with quorum need to be investigated.

This security issue is similar to that of super peer storage,
in that local data can be accessed, thus circumventing the
certification system. With this circumvention, the objectives
of authentication, authorization, confidentiality, trust, priv-
acy, and identity management are all compromised.

5.5.4 Fairness

Distance-based storage is relatively fair as all objects are
distributed among all nodes. Where the system becomes
somewhat unfair is when a node is nearest to a large
number of objects. For Voronoi regioning approaches, this
is when a peer’s Voronoi region contains many more
objects than the average number of objects hosted by other
peers. This might not be a major issue, depending on how
long the objects have to be hosted on the overloaded peer.
This will depend on the movement of the overloaded peer
as well as that of neighboring peers. The use of
aggregators as a proposed solution to this problem is
discussed in Section 5.5.5.

5.5.5 Existing Architectures

Bharambe et al. created the Colyseus architecture in 2006
[57]. The architecture is designed to support First Person
Shooter (FPS) games and implemented to function with
Quake II. Mutable game objects are stored on the peer that
is nearest to the object in the game world. An “object
placer” component is mentioned, but the details of the
placement algorithm are left for future work. The archi-
tecture also does not implement nonvolatile state persis-
tency, since this is not required for normal FPS games,
where object states need only exist to the end of a round and
where players generally do not leave before the end of the
round. This means that object states are only stored in
primary memory, until the end of a game round.

The Solipsis architecture was created by Frey et al. in
2008 [25]. The architecture uses Voronoi diagrams to create
virtual regions. Stationary objects are maintained by site
nodes until a player picks up an object. When an object is
picked up, control of that object is transferred to the player
that picked up the object. The Solipsis architecture focuses
on distributed physics computation and when a player
gains control of an object, that player is responsible for the
object’s physics computations. That player should also save
all object state until a new player takes the object, at which
time control is transferred to her. Control can also be
transferred back to a site node if an object remains
stationary for some time.

What differentiates the Solipsis distance-based storage
from the other architectures presented in this section, is that
object states are only handled by peers as long as those
peers directly use an object. At other times, those objects are
handled by site nodes. This differs from other distance-
based storage techniques, where all objects that are nearest
to a player in the virtual world are controlled by that player.

830 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

In 2008, papers were published by Buyukkaya and
Abdallah [56], and Hu et al. [31], proposing to use Voronoi
diagrams [66] to implement distance-based storage. Vor-
onoi state management schemes host the mutable objects on
the peer in which region the object exists. As peers move
around in the virtual world, the Voronoi diagram has to be
constantly recalculated and objects have to be moved to
new owner peers as the regions in which they fall change.
The significant advantage of the Voronoi approach is that
peers only require connections with their neighbors, and
peers within their AoI.

A thesis by Chang also describes the Voronoi approach in
more detail and how to achieve game state consistency
among all nodes in a Voronoi network [67]. What
distinguishes this work from the others is the implementa-
tion of a load balancing mechanism. When peers get
overloaded, another, more powerful peer is chosen as an
Aggregator. The Aggregator assumes responsibility for a
larger area that encompasses multiple peers. This scheme
will reduce the load on peers with minimal resources, but it
is uncertain how this would reduce load when peers with an
average number of resources in an area become overloaded.

The works by Buyukkaya and Abdallah, Hu et al., and
Chang form part of the VAST project, which is being
created to be a fully functional P2P overlay architecture,
using Voronoi diagrams as its basis [68]. The reason why
state persistency in Voronoi-based P2P MMOGs architec-
tures are mostly distance-based approaches, is because the
Voronoi diagram immediately identifies which objects are
closest to a particular peer, and therefore, which objects that
peer has to host. Architectures not making use of Voronoi
diagrams still require some other mechanism to identify
which objects which peers should host.

5.6 Summary and Recommendations

Supper peer storage can be seen as a C/S type storage
implementation, where every region has a super peer that
stores all data for that region. Overlay storage is a fully
distributed, P2P approach to storage, where every node
stores data as part of a P2P overlay network. Hybrid region-
based storage combines super peer and overlay storage to
improve the overall storage performance. Distance-based
storage is a different paradigm that stores game objects on
the nearest node to that game object. This type of storage is
usually characterized by the use of Voronoi diagrams to
determine which nodes are nearest to which objects.

Super peer storage is characterized by its high level of
responsiveness and ease of implementation. Overlay
storage is characterized by its high level of fairness and
reliability. Hybrid region-based storage combines the two
previous schemes and has high levels of reliability and
responsiveness. Distance-based storage is also very respon-
sive and can be made both reliable and fair.

Security is still an issue for all storage types. Super peer
storage has the issues that are usually present in a
centralized system, namely low fairness, security and also
not being reliable and not resistant to failure. The main
issue with overlay storage is its unresponsiveness, because
of the routing delay in the P2P overlay. Hybrid storage
suffers from the disadvantages of super peer storage,
namely low fairness and security, due to all files still stored

on super peers. The main issue of distance-based storage is
security, because players that have the most incentive to
alter object states own those objects.

The different storage types vary greatly in implementa-
tion complexity as also shown in Table 1. The simplest type
of storage to use is super peer storage, but because of the
many issues present, this is not recommended. Only when
one is sure that the super peers will not be overloaded
should this storage method be used. There might still be
some customers who are unhappy that a few have to serve
data to the many.

No recent mention could be found of researchers
implementing super peer storage for P2P MMOGs. This
could mean that there has been very little evolution in super
peer storage and that super peer storage is currently less
mature than other storage schemes. Super peer storage
might still be used for small independent casual games,
such as online board games, where a group of friends can
implicitly trust each other or where the risk of cheating is at
a minimum. The reason why this storage method is
recommended for games from independent developers, is
because the scheme is easy to implement and will not
require many resources when used for small games.

For developers who are looking for a simple yet fairly
robust storage system to start using in their project, overlay
storage is recommended. Overlay storage can be used for
games that do not require low-latency data access and
would allow for lazy updating of the database. These games
will be lightweight casual and social games. But, depending
on the game implementation itself, this storage type might
also be used for smaller hardcore games. Overlay storage
will place some restrictions on certain game mechanics, but
it is possible that games could be designed around these
restrictions. The primary restriction being that data cannot
be immediately retrieved or stored from or to storage.

Examples of overlay storage types that might be used
are: PAST, Freenet, and Oceanstore and any other overlay
storage that is based on a DHT overlay. Storage based on
DHT overlays is still a viable research field and future
implementations will improve on the present systems.

Hybrid region-based storage has all the advantages of
super peer storage, but with the additional reliability of
overlay storage. For this reason, it is recommended that any
game presently requiring high levels of reliability and
responsiveness use hybrid storage, instead of super peer or
overlay storage. This storage type currently seems to be the
only type applicable to games that require responsive and
reliable storage.

That said, no existing implementations could be found
that implement this type of storage for public use. The
consequence is that someone who wishes to use this storage
will mostly have to implement it. This can be done by
starting out with super peer storage and using a publicly
available overlay storage to augment the super peer storage.

Distance-based storage is still fairly immature, but shows
a lot of promise. No publicly available implementation
could be found for this type of storage. Where this type of
storage was used, it was explained as distance-based
storage, but most of the details were left out. This storage
is, therefore, not a candidate as a storage technique for

GILMORE AND ENGELBRECHT: A SURVEY OF STATE PERSISTENCY IN PEER-TO-PEER MASSIVELY MULTIPLAYER ONLINE GAMES 831

developers that are merely looking for a storage system to
use presently. This type of storage does, however, provide a
lot of opportunities for research.

6 CONCLUSION

6.1 Summary

After providing an overview of the classic C/S and C/MS
state persistency techniques, this survey classified P2P
MMOG state persistency techniques into super peer based,
overlay based, distance based, and hybrid storage. The
advantages and disadvantages of each method were
discussed after identifying key challenges that state
persistency techniques have to solve. These challenges are:
Reliability, Security, Fairness, and Responsiveness.

We conclude that there exists no single state persistency
architecture, currently in use, that is suited to P2P MMOGs.
None of the storage techniques reviewed meet the require-
ments of a real-time distributed application, such as an
MMOG. What is required is a state persistency architecture,
specifically geared toward data persistency in P2P MMOGs,
that meet all the challenges of the application.

This survey was written, because of an identified need
for a concise summary of the field of P2P MMOG game
state persistency. Many techniques used in the past were
used because of the ease with which they could be
integrated into a P2P MMOG. The purpose of this survey
is to identify those techniques and to stimulate further
research, using empirical methods to compare the different
storage techniques used.

6.2 Prospective Research Directions

One of three paths may be followed in order to create a
storage type that is suitable to modern hardcore MMOGs.
The first would be to take a look at the deficiencies
mentioned in the different storage types and to then
improve one of these types. The other path is what was
seen with hybrid storage, where multiple types of storage
are combined in order to form a new and improved storage
type. The third path would be to create a new storage type,
based on some novel insight into the ways in which games
are designed.

What follows is a discussion on what work is required
in order to improve the current storage types and attempts
to define the gaps present that should still be solved by
future researchers.

For super peer storage to become viable, a means is
required to secure the data stored in the super peers and
ensure that no super peer is able to access the data stored. If
this issue is solved, the fairness issue still exists, but might
be allowable depending on the type of application.

Overlay storage is a popular storage method in the
literature. This is believed to be more as a consequence of
the use of Scribe [69] than any inherit benefit to P2P
MMOGs [53], [24]. The reason for using overlay storage in
so many implementations seem to be merely the availability
of PAST, after having already decided to use Scribe. In other
words, researchers use Scribe for ALM, Scribe runs on
Pastry, and PAST is then a readily available storage
implementation which also runs on Pastry.

The applicability of overlay storage to MMOGs is still
unknown and further research is required. This paper
showed that while PAST is regularly used in P2P
MMOGs, it is not because of the applicability of PAST to
P2P MMOGs.

One type of hybrid storage was investigated in this
paper, namely overlay/super peer storage, since this is a
hybrid type currently seen in P2P MMOGs. Other hybrid
types should also be investigated, for example, a distance-
based/overlay storage hybrid might improve the reliability
of distance-based storage. Multitiered storage might also be
of interest, where players or areas are grouped in some way.
One type of storage might then be implemented among the
members of a group, with another storage type implemen-
ted over all groups. Such a storage type might improve
responsiveness among group members, while adding
reliability because of an intergroup backup mechanism.

Distance-based storage still seems immature, with many
open questions. Currently, distance-based storage is based
on Voronoi diagrams, which seem promising. But Voronoi
diagrams only provide for a means to identify which
objects should be under a specific node’s control. Object
migration, which will occur frequently in this type of
storage should still be addressed. The number of migra-
tions should be kept to a minimum to ensure responsive
access to all stored objects.

The storage is also not yet reliable, but it could be
possible to add overlay storage as a backup to the system
and thereby add reliability. If voting techniques can be used
to update game state, some of the security issues might also
be solved. With these two issues addressed, the high degree
of fairness of distance-based storage makes it an excellent
candidate to power the P2P MMOGs of the future.

An empirical comparison of the performances of the
different storage types is also required. It is believed that the
metrics presented in this paper could provide a common
basis to use in comparing the different storage types.

Research is still required into the characteristics of data
stored by MMOGs. This includes how regularly game
objects are stored as well as the sizes of these objects. It is
also expected that different read and write patterns exist for
different types of game objects. These patterns should be
explored in order to determine what the required perfor-
mance is for P2P MMOGs storage mechanisms.

It is recommended that C/S MMOG storage patterns
initially be investigated to provide a benchmark of the
required storage performance for a mature MMOGs. The
storage patterns for a C/S compared to P2P MMOGs might
be different. The storage patterns among different MMOGs
might also differ greatly, but for an immature field any data
are better than no data.

In conclusion, this paper describes a possible new
research field with many open questions still to be answered.

ACKNOWLEDGMENTS

The financial assistance of MIH and the National Research
Foundation (NRF) toward this research is hereby acknowl-
edged. Opinions expressed and conclusions arrived at, are
those of the author and are not necessarily to be attributed
to MIH or the NRF.

832 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

REFERENCES

[1] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-Peer Support
for Massively Multiplayer Games,” Proc. IEEE INFOCOM, vol. 1,
p. 107, 2004.

[2] M. Castro, M. Costa, and A. Rowstron, “Debunking Some Myths
about Structured and Unstructured Overlays,” Proc. Second Symp.
Networked Systems Design and Implementation (NSDI ’05), vol. 2,
pp. 85-98, 2005.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” Proc. SIGCOMM,
pp. 161-172, 2001.

[4] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrish-
nan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” SIGCOMM Computer Comm. Rev., vol. 31, no. 4,
pp. 149-160, 2001.

[5] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, “Tapestry: An
Infrastructure for Fault-Tolerant Wide-Area Location and Rout-
ing,” technical report, Univ. of California at Berkeley, 2001.

[6] A. Rawstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer
Systems,” Proc. 18th IFIP/ACM Int’l Conf. Distributed Systems
Platforms (Middleware ’01), 2001.

[7] R. Rodrigues and P. Druschel, “Peer-to-Peer Systems,” Comm.
ACM, vol. 53, pp. 72-82, 2010.

[8] L. Fan, P. Trinder, and H. Taylor, “Design Issues for Peer-to-Peer
Massively Multiplayer Online Games,” Int’l J. Advanced Media
Comm., vol. 4, no. 2, pp. 108-125, 2010.

[9] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low Latency
and Cheat-Proof Event Ordering for Peer-to-Peer Games,” Proc.
14th Int’l Workshop Network and Operating Systems Support for
Digital Audio and Video, pp. 134-139, http://doi.acm.org/10.1145/
1005847.1005877, 2004.

[10] J.L. Miller and J. Crowcroft, “The Near-Term Feasibility of P2P
MMOG’s,” Proc. Ninth Ann. Workshop Network and Systems Support
for Games (NetGames), pp. 1-6, 2010.

[11] K.L. Morse, L. Bic, and M. Dillencourt, “Interest Management in
Large-Scale Virtual Environments,” Presence: Teleoperators and
Virtual Environments, vol. 9, pp. 52-68, 2000.

[12] L. Wang, S. Turner, and F. Wang, “Interest Management in Agent-
Based Distributed Simulations,” Proc. Seventh IEEE Int’l Symp.
Distributed Simulation and Real-Time Applications, pp. 20-27, 2003.

[13] J.-S. Boulanger, J. Kienzle, and C. Verbrugge, “Comparing Interest
Management Algorithms for Massively Multiplayer Games,” Proc.
Fifth ACM SIGCOMM Workshop Network and System Support for
Games (NetGames), p. 6, 2006.

[14] S. Krause, “A Case for Mutual Notification: A Survey of P2P
Protocols for Massively Multiplayer Online Games,” Proc. Seventh
ACM SIGCOMM Workshop Network and System Support for Games
(NetGames), pp. 28-33, 2008.

[15] S. Fiedler, M. Wallner, and M. Weber, “A Communication
Architecture for Massive Multiplayer Games,” Proc. First ACM
SIGCOMM Workshop Network and System Support for Games
(NetGames), pp. 14-22, 2002.

[16] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen,
“Deployment Issues for the IP Multicast Service and Architec-
ture,” IEEE Network, vol. 14, no. 1, pp. 78-88, Jan./Feb. 2000.

[17] C. Neumann, N. Prigent, M. Varvello, and K. Suh, “Challenges in
Peer-to-Peer Gaming,” SIGCOMM Computer Comm. Rev., vol. 37,
no. 1, pp. 79-82, 2007.

[18] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low Latency
and Cheat-Proof Event Ordering for Peer-to-Peer Games,” Proc.
14th Int’l Workshop Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), pp. 134-139, 2004.

[19] S.D. Webb, S. Soh, and W. Lau, “RACS: A Referee Anti-Cheat
Scheme for P2P Gaming,” Proc. Int’l Workshop Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV),
pp. 34-42, 2007.

[20] A. Belapurkar, A. Chakrabarti, H. Ponnapalli, N. Varadarajan, S.
Padmanabhuni, and S. Sundarrajan, Distributed Systems Security:
Issues, Processes and Solutions. Wiley, 2009.

[21] S.D. Webb and S. Soh, “A Survey on Network Game Cheats and
P2P Solutions,” Australian J. Intelligent Information Processing
Systems, vol. 9, no. 4, pp. 34-43, 2007.

[22] D.S. Wallach, Software Security—Theories and Systems, A Survey of
Peer-to-Peer Security Issues, pp. 253-258. Springer, 2003.

[23] B. Cohen, “Incentives Build Robustness in Bittorrent,” Proc. First
Workshop Economics of Peer-to-Peer Systems, 2003.

[24] L. Fan, “Solving Key Design Issues for Massively Multiplayer
Online Games on Peer-to-Peer Architectures,” PhD dissertation,
School of Math. and Computer Sciences—Heriot-Watt Univ., 2009.

[25] D. Frey, J. Royan, R. Piegay, A.-M. Kermarrec, E. Anceaume, and
F.L. Fessant, “Solipsis: A Decentralized Architecture for Virtual
Environments,” Proc. First Int’l Workshop Massively Multiuser
Virtual Environments (MMVE), pp. 29-33, 2008.

[26] L. Fan, H. Taylor, and P. Trinder, “Mediator: A Design Frame-
work for P2P MMOGS,” Proc. Sixth ACM SIGCOMM Workshop
Network and System Support for Games (NetGames) pp. 43-48, 2007.

[27] P. Bettner and M. Terrano, “1500 Archers on a 28.8: Network
Programming in Age of Empires and Beyond,” Proc. Game
Developers Conf. (GDC ’01), 2001.

[28] T. Sweeney, “Unreal Networking Architecture,” Epic Mega-
Games, technical report, http://unreal.epicgames.com/
Network.htm, 1999.

[29] A. Dainotti, A. Pescape, and G. Ventre, “A Packet-Level Traffic
Model of Starcraft,” Proc. Second Int’l Workshop Hot Topics in Peer-
to-Peer Systems (HOT-P2P ’05), pp. 33-42, 2005.

[30] N. Baughman and B. Levine, “Cheat-Proof Playout for Centralized
and Distributed Online Games,” Proc. IEEE INFOCOM, vol. 1,
pp. 104-113, 2001.

[31] S.-Y. Hu, S.-C. Chang, and J.-R. Jiang, “Voronoi State Management
for Peer-to-Peer Massively Multiplayer Online Games,” Proc. IEEE
Fifth Consumer Comm. and Networking Conf. (CCNC), pp. 1134-1138,
2008.

[32] E. Cronin, B. Filstrup, A.R. Kurc, and S. Jamin, “An Efficient
Synchronization Mechanism for Mirrored Game Architectures,”
Proc. First Workshop Network and System Support for Games
(NetGames), pp. 67-73, 2002.

[33] J. Müller and S. Gorlatch, “Rokkatan: Scaling an RTS Game Design
to the Massively Multiplayer Realm,” Computers in Entertainment,
vol. 4, no. 3, p. 11, 2006.

[34] F. Lu, S. Parkin, and G. Morgan, “Load Balancing for Massively
Multiplayer Online Games,” Proc. Fifth Workshop Network and
System Support for Games (NetGames), p. 1, 2006.

[35] J.C.S. Lui and M.F. Chan, “An Efficient Partitioning Algorithm for
Distributed Virtual Environment Systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 13, no. 3, pp. 193-211, Mar. 2002.

[36] P. Morillo, J.M. Orduña, M. Fernández, and J. Duato, “An
Adaptive Load Balancing Technique for Distributed Virtual
Environment Systems,” Proc. 15th IASTED Int’l Conf. Parallel and
Distributed Computing and Systems (PDCS ’03), pp. 256-261, 2003.

[37] M. Assiotis and V. Tzanov, “A Distributed Architecture for
MMORPG,” Proc. Fifth ACM SIGCOMM Workshop Network and
System Support for Games (NetGames), p. 4, 2006.

[38] R. Chertov and S. Fahmy, “Optimistic Load Balancing in a
Distributed Virtual Environment,” Proc. Int’l Workshop Network
and Operating Systems Support for Digital Audio and Video
(NOSSDAV), pp. 1-6, 2006.

[39] J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and C. Amza,
“Locality Aware Dynamic Load Management for Massively
Multiplayer Games,” Proc. 10th ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming (PPoPP ’05), pp. 289-300, 2005.

[40] G. Schiele, R. Suselbeck, A. Wacker, J. Hahner, C. Becker, and T.
Weis, “Requirements of Peer-to-Peer-Based Massively Multi-
player Online Gaming,” Proc. Seventh IEEE Int’l Symp. Cluster
Computing and the Grid (CCGRID), pp. 773-782, 2007.

[41] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell,
“A Survey of Peer-to-Peer Storage Techniques for Distributed File
Systems,” Proc. Int’l Conf. Information Technology: Coding and
Computing (ITCC), vol. 2, pp. 205-213, 2005.

[42] M. Amoretti, “A Survey of Peer-to-Peer Overlay Schemes:
Effectiveness, Efficiency and Security,” Recent Patents on Computer
Science, vol. 2, no. 3, pp. 195-213, 2009.

[43] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
Eisler, and D. Noveck, Network File System (NFS) Version 4 Protocol,
Sun Microsystems, Hummingbird and Network Appliance IETF
RFC 3530, http://tools.ietf.org/html/rfc3530, 2003.

[44] J.J. Kistler and M. Satyanarayanan, “Disconnected Operation in
the Coda File System,” ACM Trans. Computer Systems, vol. 10,
pp. 3-25, 1992.

[45] A. Chandler and J. Finney, “On the Effects of Loose Causal
Consistency in Mobile Multiplayer Games,” Proc. Fourth ACM
SIGCOMM Workshop Network and System Support for Games
(NetGames), pp. 1-11, 2005.

GILMORE AND ENGELBRECHT: A SURVEY OF STATE PERSISTENCY IN PEER-TO-PEER MASSIVELY MULTIPLAYER ONLINE GAMES 833

[46] S. Kulkarni, “Badumna Network Suite: A Decentralized Network
Engine for Massively Multiplayer Online Applications,” Proc.
IEEE Ninth Int’l Conf. Peer-to-Peer Computing (P2P), pp. 178-183,
2009.

[47] S. Rooney, D. Bauer, and R. Deydier, “A Federated Peer-to-Peer
Network Game Architecture,” IEEE Comm. Magazine, vol. 42,
no. 5, pp. 114-122, May 2004.

[48] J. Jardine and D. Zappala, “A Hybrid Architecture for Massively
Multiplayer Online Games,” Proc. Seventh ACM SIGCOMM
Workshop Network and System Support for Games (NetGames),
pp. 60-65, 2008.

[49] F. Chen and V. Kalogeraki, “Adaptive Real-Time Update
Dissemination in Distributed Virtual Simulation Environments,”
Proc. IEEE Eighth Int’l Symp. Object-Oriented Real-Time Distribute
Computing (ISORC), pp. 233-236, 2005.

[50] N.E. Baughman, M. Liberatore, and B.N. Levine, “Cheat-Proof
Playout for Centralized and Peer-to-Peer Gaming,” IEEE/ACM
Trans. Networking, vol. 15, no. 1, pp. 1-13, Feb. 2007.

[51] S. Douglas, E. Tanin, A. Harwood, and S. Karunasekera,
“Enabling Massively Multi-Player Online Gaming Applications
on a P2P Architecture,” Proc. IEEE Int’l Conf. Information and
Automation (ICIA), pp. 7-12, 2005.

[52] M. Merabti and A. El Rhalibi, “Peer-to-Peer Architecture and
Protocol for a Massively Multiplayer Online Game,” Proc. IEEE
Global Telecomm. Conf. Workshops (GlobeCom Workshops), pp. 519-
528, 2004.

[53] T. Hampel, T. Bopp, and R. Hinn, “A Peer-to-Peer Architecture for
Massive Multiplayer Online Games,” Proc. Fifth ACM SIGCOMM
Workshop Network and System Support for Games (NetGames), p. 48,
2006.

[54] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned Federation
of Game Servers: A Peer-to-Peer Approach to Scalable Multi-
Player Online Games,” Proc. Third ACM SIGCOMM Workshop
Network and System Support for Games (NetGames), pp. 116-120,
2004.

[55] C. Gauthier Dickey, D. Zappala, and V. Lo, “A Fully Distributed
Architecture for Massively Multiplayer Online Games,” Proc.
Third ACM SIGCOMM Workshop Network and System Support for
Games (NetGames), pp. 171-171, 2004.

[56] E. Buyukkaya and M. Abdallah, “Data Management in Voronoi-
Based P2P Gaming,” Proc. IEEE Fifth Consumer Comm. and
Networking Conf. (CCNC), pp. 1050-1053, 2008.

[57] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: A Distributed
Architecture for Online Multiplayer Games,” Proc. Symp. Net-
worked Systems Design and Implementation (NSDI), 2006.

[58] CCP Shadow. 60,453 Pilots: the New Eve PCU Record. CCP
Games, http://www.eveonline.com/news.asp?a=single&nid=
3934&tid=1, June 2010.

[59] The9, “The9 Limited Reports Fourth Quarter and Fiscal Year 2008
Unaudited Financial Results,” The9, Earnings Release, http://
www.the9.com/en/pdf/The9_4Q08_ER_FINAL.pdf, 2009.

[60] Secure Hash Signature Standard, Nat’l Inst. of Standards and
Technology Std., http://csrc.nist.gov/publications/fips/
fips180-2/fips180-2withchangenot ice.pdf, Aug. 2002.

[61] A. Rowstron and P. Druschel, “Storage Management and Caching
in PAST, a Large-Scale, Persistent Peer-to-Peer Storage Utility,”
SIGOPS Operating Systems Rev., vol. 35, no. 5, pp. 188-201, 2001.

[62] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System,” Proc. Int’l Workshop Designing Privacy Enhancing Technol-
ogies, pp. 46-66, 2001.

[63] A. Harwood and E. Tanin, “Hashing Spatial Content over Peer-to-
Peer Networks,” Proc. Australian Telecomm., Networks, and Applica-
tions Conf. (ATNAC), pp. 1-5, 2003.

[64] P. Druschel and A. Rawstron, “PAST: A Large-Scale, Persistent
Peer-to-Peer Storage Utility,” Proc. Eighth Workshop Hot Topics in
Oerating Systems (HotOS VIII), 2001.

[65] M. Steiner and E.W. Biersack, “Shortcuts in a Virtual World,” Proc.
ACM CoNEXT Conf., p. 1, 2006.

[66] F. Aurenhammer, “Voronoi Diagrams—A Survey of a Funda-
mental Geometric Data Structure,” ACM Computing Surveys,
vol. 23, no. 3, pp. 345-405, 1991.

[67] S.-C. Chang, “Voronoi Diagram Based State Management for Peer-
to-Peer Virtual Environments,” master’s thesis, Nat’l Central
Univ., 2008.

[68] VAST Development Team. VAST. http://vast.sourceforge.net,
Dec. 2010.

[69] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
“Scribe: A Large-Scale and Decentralized Application-Level
Multicast Infrastructure,” IEEE J. Selected Areas in Comm., vol. 20,
no. 8, pp. 1489-1499, Oct. 2002.

John S. Gilmore received the bachelor’s and
master’s degrees in electrical and electronic
engineering with computer science from Stel-
lenbosch University in 2007 and 2010, respec-
tively. He is currently working toward the PhD
degree at the MIH Media Lab at Stellenbosch
University. His research interests include com-
puter networks, distributed systems, and com-
munication protocols. He is a student member
of the IEEE.

Herman A. Engelbrecht received the PhD
degree in electronic engineering from the Uni-
versity of Stellenbosch in 2007. He joined the
Department of Electrical and Electronic Engi-
neering at the University of Stellenbosch in 2003.
His research interests include pattern Recogni-
tion, computer vision, and electronic media. He is
a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

834 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

