Colyseus: A Distributed Architecture for Online Multiplayer Games

Ashwin Bharambe
Carnegie Mellon University
ashu+@cs.cmu.edu

Abstract

This paper presents the design, implementation, and
evaluation of Colyseus, a distributed architecture for
interactive multiplayer games. Colyseus takes advan-
tage of a game’s tolerance for weakly consistent state
and predictable workload to meet the tight latency con-
straints of game-play and maintain scalable communi-
cation costs. In addition, it provides a rich distributed
query interface and effective pre-fetching subsystem to
help locate and replicate objects before they are accessed
at a node. We have implemented Colyseus and mod-
ified Quake II, a popular first person shooter game, to
use it. Our measurements of Quake II and our own
Colyseus-based game with hundreds of players shows
that Colyseus effectively distributes game traffic across
the participating nodes, allowing Colyseus to support
low-latency game-play for an order of magnitude more
players than existing single server designs, with similar
per-node bandwidth costs.

1 Introduction

Networked games are rapidly evolving from small 4-8
person, one-time play games to large-scale games in-
volving thousands of participants and persistent game
worlds. Almost all networked games, however, are
centralized — players send control messages to a cen-
tral server and the server sends relevant state updates
to all active players. This approach suffers from the
well known robustness and scalability problems of sin-
gle server designs. For example, high update rates
prevent even well provisioned servers from supporting
more than several tens of players in first person shooter
(FPS) games. Further, client-server game designs often
force players to rely on infrastructure provided by the
game manufacturers. These infrastructures are some-
times not well provisioned nor long-lived; thus, they
either provide poor performance or prevent users from
playing their game long after their purchase.

A distributed design can potentially address the above
shortcomings. However, architecting a distributed ap-
plication is difficult due to the challenges of partition-
ing the application’s state (e.g., game objects) and ex-
ecution (e.g., the logic to simulate player and game Al
actions) among the participating nodes. Distributing a

Jeffrey Pang
Carnegie Mellon University
jeffpang+@cs.cmu.edu

Srinivasan Seshan
Carnegie Mellon University

srini@cmu.edu

networked game is even more difficult due to the per-
formance demands of real-time game-play. In addition,
since the game-play of an individual player translates to
updates to the shared state of the game application, there
is much more write traffic and write-sharing than most
distributed applications.

Fortunately, we can take advantage of two fundamen-
tal properties of games to address these challenges. First,
games tolerate weak consistency in the application state.
For example, current client-server implementations min-
imize interactive response time by presenting a weakly
consistent view of the game world to players. Second,
game-play is usually governed by a strict set of rules
that make the reads and writes to the shared state highly
predictable. For example, most reads and writes by a
player occur upon objects that are physically close to
that player in the game world. The challenge, then, is
to arrive at a scalable and efficient state and logic par-
titioning that enables reasonably consistent, low-latency
game-play. This paper presents the design, implemen-
tation, and evaluation of Colyseus, a novel distributed
architecture for interactive multiplayer games designed
to achieve the above goals.

In Colyseus, any node may create read-only repli-
cas of any game object. However, objects in Colyseus
follow a single-copy consistency model — i.e., all up-
dates to an object are serialized through exactly one pri-
mary copy in the system. This approach mirrors the
consistency model of existing client-server architectures
on a per object basis. Although replicas are only kept
weakly consistent with the primary copy, they enable
the low-latency read access needed to keep game execu-
tion timely. The challenge is for each node to determine
the set of replicas it needs in advance of executing any
game logic. Colyseus provides a rich query interface
over the system-wide collection of objects to identify
and fetch required objects. We have implemented this
query interface on both a randomized distributed hash ta-
ble (DHT) [28] and a dynamically load balanced, range-
based DHT [3]. However, lookups in DHTSs can be too
slow for finding required replicas in games. To hide this
lookup latency, Colyseus uses locality and predictabil-
ity in data access patterns to speculatively pre-fetch ob-
jects. This mechanism is only used to discover relevant
objects; updates are propagated from primary copies to

replicas directly. We show that the combination of all
these techniques is critical to enabling interactive game-
play.

Colyseus enables games to efficiently use widely dis-
tributed servers to support a large community of users.
We have modified Quake II [22], a popular server-
based First Person Shooter (FPS) game, to run on our
implementation of Colyseus, and have also used mea-
surements of Quake III [23] game-play to develop our
own Colyseus-based game with players that mimic the
Quake III workload. These concrete case studies illus-
trate the practicality of using our architecture to dis-
tribute existing game implementations. Our measure-
ments on an Emulab testbed with hundreds of players
show that Colyseus is effective at distributing game traf-
fic and workload across the participating nodes, while
providing servers and players with low-latency and con-
sistent views of the game world. In the following sec-
tions, we provide background about general game design
as well as the design and evaluation of Colyseus.

2 Background

In this section, we survey the requirements of online
multiplayer games and demonstrate the fundamental
limitations of existing client-server implementations. In
addition, we provide evidence that resources exist for
distributed deployments of multiplayer games.

2.1 Contemporary Game Design

To determine the requirements of multiplayer games, we
studied the source code of several popular and publicly
released engines for virtual reality games, including
Quake II [22], Quake III [23], and the Torque Network-
ing Library [30]. In these games, each player (game
client) controls an avatar (player’s representative in the
game) in a large game world, though a player only in-
teracts with a small portion of the world at any given
time. This description applies to many popular genres,
including FPSs (such as Quake and Counter Strike), role
playing games (RPGs) (such as Everquest and World of
Warcraft), and others. There are certainly some game
genres that do not fit this description, such as Real Time
Strategy (RTS) or puzzle games, but they are outside the
scope of our study.

Almost all commercial virtual reality games are based
on a client-server architecture where a single server
maintains the state of the game world or disjoint portion
of the game world. The game state is typically struc-
tured as a collection of objects, each of which represents
a part of the game world, such as the game world’s ter-
rain, players’ avatars, computer controlled players (i.e.,
bots), items (e.g., health-packs), and projectiles. Each
object is associated with a piece of code called a think

function that determines the actions of the object. Typi-
cal think functions examine and update the state of both
the associated object and other objects in the game. For
example, a monster may determine its move by exam-
ining the surrounding terrain and the position of nearby
players. The game state and execution is composed from
the combination of these objects and associated think
functions.

The server runs a discrete event loop. In each iter-
ation (or frame in game parlance), the server invokes
think function for each object in the game and sends out
the new view of the game state to each player. In FPS
games, 10 to 20 iterations are executed each second; this
frequency (called the frame-rate) is generally lower in
other genres.

2.2 Client-Server Scaling Properties

The single server hosting a game can become a compu-
tation and communication bottleneck. To quantify these
bottlenecks, we describe the general scaling properties
of games and present measurements from Quake II, a
typical FPS game.

Scalability Analysis: A game server’s outbound band-
width requirement (which is substantially higher than its
inbound traffic [10]) is mainly determined by three game
parameters: number of objects in play n, the average
size of those objects s, and the game’s frame-rate f. For
example, in Quake II, if we only consider objects rep-
resenting players (which tend to dominate game update
traffic), n ranges from 8 to 64, s is about 200 bytes, and
f is 10 updates per second. A naive server implementa-
tion which simply broadcasts the updates of all objects
to all ¢ game clients would incur an outbound bandwidth
costof c-n-s- f, or I-66Mbps in games with 8 to 64
players.

Two common optimizations are employed to reduce
this cost: area-of-interest filtering and delta-encoding.
Since individual players only interact with a small por-
tion of the game world at any given time, only updates
about relevant objects are sent to the clients. Addition-
ally, object state changes little from one update to the
next. Therefore, most servers send the difference (i.e.,
delta) between updates. These optimizations reduce n
and s respectively. In the case of 8-64 player Quake
IT games, the server bandwidth requirement reduces to
about 62-492 kbps.

Empirical Scaling Behavior: Figure 1 shows the per-
formance of a Quake II server running on a Pentium-III
1GHz machine with 512 RAM with different numbers
of players. Each player is simulated using a server-side
Al bot (though the server sends packets to them as if
they were real clients). The server implements area-of-
interest filtering, delta-encoding and does not rate-limit

17000

14000 /—\

11000
8000

5000
2000 ”/
0 100 200 300 400 500 600
Number of simulated players

Achieved frame rate

[N Y

Aggregate out-bw (kbps)

0 100 200 300 400 500 600
Number of simulated players

(a) (b)

Figure 1: Computational and network load scaling behav-
ior of a Quake II server.

0.02

2
% 10sec Path Length Stats
§ 001 | Mean 14.8
g Std Dev 3.6
E Median 15
2 0 P 95 %ile 20
0 50 100 150 200 250
Region Rank
(@) (b)

Figure 2: Quake III workload characteristics. (a) Popu-
larity of different regions in a map. (b) Lengths of paths
traveled by players every 10 seconds.

clients. Each game was run for 10 minutes at 10 frames
per second.

As the computational load on a server increases, the
server may require more than 1 frame-time of compu-
tation to service all clients. Hence, it may not be able
to sustain the target frame-rate. Figure 1(a) shows the
mean number of frames per second actually computed
by the server, while Figure 1(b) shows the bandwidth
consumed at the server for sending updates to clients.
We note several points: First, as the number of play-
ers increases, area-of-interest filtering computation be-
comes a bottleneck and the frame-rate drops. (Detailed
measurements show that the computational bottleneck is
indeed the filtering code and not our Al bot code.) Sec-
ond, Figure 1(b) shows that, as the number of players
increases, the bandwidth-demand at the server increases
more than linearly, since as the number of players in-
creases, player interaction increases (for example, more
missiles are fired.) Thus, n increases along with c result-
ing in a super-linear increase in bandwidth. Finally, we
note that when the number of players exceeds 250, com-
putational load becomes the bottleneck. The reduction
in frame-rate offsets the increase in per-frame bandwidth
(due to the increase in the number of clients), so we actu-
ally see the bandwidth requirement decrease. Although
the absolute limits can be raised by employing a more
powerful server, this illustrates that it is difficult for any
centralized server to handle thousands of players.

2.3 A Multiplayer Gaming Workload

To further understand the requirements of online games,
we studied the behavior of human players in real games.
We obtained player movement traces from several ac-

<
| Game | Servers | -
& o8 T
HalfLife / 10,582 2 -
Counter-Strike 5 06y e
P 4 | ...~ Counter-Strike
Quake 2 645 g 0.4 oo Quake 5
anke 3 112 g 02| quarE(beeg
Tribes 233 8 0) _ Tribgs 2 -
Tribes 2 394 * 0 02 04 06 08 1
Load (players/max allowed)
(a)

Figure 3: (a) Observed number of third-party deployed
servers for several games, (b) Load on these servers.

tual Quake III games played by actual players on an In-
ternet server. We observed that players tended to move
between popular “waypoint” regions in the map and the
popularity distribution of waypoints was Zipf-like. Fig-
ure 2(a) ranks the regions in a particular map by popular-
ity (i.e., how often players occupy them.) This charac-
teristic suggests that load balancing would be an impor-
tant property of a distributed gaming architecture. Fig-
ure 2(b) shows the length of player movement paths in
10 second intervals, given in bucketized map units (the
map is 20 units in diameter.) Despite the popularity of
certain regions, players still move around aggressively
in short periods of time; the median path length is 15,
which is almost the diameter of the map. Hence, a
distributed game architecture must be able to adapt to
changes in player positions quickly.

Our analysis showed that this model fits the game-
play across several different maps and game types (e.g.,
Death Match and Capture the Flag), and we believe that
it is representative of other FPS games since objectives
and game-play do not vary substantially. Colyseus is de-
signed primarily with FPS games in mind because we
believe FPS game-play is the most difficult to support in
a distributed setting. However, we discuss (Section 7.3)
how games with different workloads might change our
results.

2.4 Distributed Deployment Opportunities

Research designs [27], middle-ware layers [5, 17] and
some commercial games [24] have used server clusters
to improve the scaling of server-oriented designs. While
this approach is attractive for publishers requiring tight
administrative control, a widely distributed game de-
ployment can address the scaling challenges and elim-
inate possible failure modes. In addition, a distributed
design can make use of existing third party federated
server deployments that we describe below, which is a
significant advantage for small publishers.

There is significant evidence that given appropriate
incentives, players are willing to provide resources for
multiplayer games. For example, most FPS games
servers are run by third parties — e.g., “clan” organiza-
tions formed by players. Figure 3(a) shows the number

Node 1 Node 2

l Game Application I l Game Application I

® @ Object Placer Object Placer ® ®
Local |« Replica Replica Local
Object Manager Manager Object
Store Store

1 i i i

[
l Object Locator ! Object Locator I

Figure 4: Colyseus components: Circled R’s represent sec-
ondary replicas, circled P’s represent primary objects.

of active third-party servers we observed for several dif-
ferent games. Figure 3(b) plots the cumulative distribu-
tion of load on the different sets of servers, where load
is defined as the ratio of the number of active players on
the server and the maximum allowed on the server. For
most games, more than 50% of the servers have a load
of 0. The server count and utilization suggest that there
are significant resources that a distributed game design
may use. Nonetheless, such a widely distributed deploy-
ment must address unique problems, such as inter-node
communication costs and latencies.

3 Colyseus Architecture

Now, we present an overview of Colyseus, which pri-
marily acts as a game object manager. There are two
types of game objects: immutable and mutable. We as-
sume that immutable objects (e.g., map geometry, game
code, and graphics) are globally replicated (i.e., every
node in the system has a copy) since they are updated
very infrequently, if at all. Per-node storage require-
ments for Quake II and Quake III are about S00MB,
though the vast majority of data is for graphics con-
tent, which could be elided on game servers. Colyseus
manages the collection of mutable objects (e.g., players’
avatars, computer controlled characters, doors, items),
which we call the global object store.

Our architecture is an extension of existing game de-
signs described in Section 2.1. In order to adapt them
for a distributed setting, mutable objects and associated
think functions are divided amongst participating nodes.
Instead of running a single synchronous execution loop,
in Colyseus, nodes run separate execution loops in par-
allel. Figure 4 shows the components in Colyseus that
manage objects on each node, which we detail below.

State Partitioning: Each object in the global object
store has a primary (authoritative) copy that resides on
exactly one node. Updates to an object performed on any
node in the system are transmitted to the primary owner,
which provides a serialization order to updates. In addi-
tion to the primary copy, each node in the system may
create a secondary replica (or replica, for short). These
replicas enable remote nodes to execute code that ac-

cesses the object. Replicas are weakly consistent and are
synchronized with the primary in an application depen-
dent manner. In practice, the node holding the primary
can synchronize replicas the same way viewable objects
are synchronized on game clients in client-server archi-
tectures. Section 5 details the synchronization process
and the consistency it affords game applications.

In summary, each node has a local object store which
is a collection of primaries and replicas, a replica man-
ager that synchronizes primary and secondary replicas,
and a object placer which decides where to place and
migrate primary replicas. For the purposes of this paper,
we assume that objects are placed on the nodes closest
to their controlling players, which is likely optimal for
minimizing interactive latency, and defer details of the
object placer and more sophisticated placement strate-
gies to future work.

Execution Partitioning: Recall that existing games ex-
ecute a discrete event loop that calls the think function
of each object in the game once per frame. Colyseus
retains the same basic design, except for one essential
difference: a node only executes the think functions as-
sociated with primary objects in its local object store.

Although a think function could access any object in
the game world, rarely will one require access to all
objects simultaneously to execute correctly. Nonethe-
less, the execution of a think function may require ac-
cess to objects that a node is not the primary owner of.
In order to facilitate the correct execution of this code,
a node must create secondary replicas of required ob-
jects. Fetching these replicas on-demand could result
in a stall in game execution, violating real-time game-
play deadlines. Instead, each primary object predicts
the set of objects that it expects to read or write in the
near future, and Colyseus pre-fetches replicas of these
objects. This prediction is specified as a selective filter
on object attributes, which we call an object’s area-of-
interest. We believe that most games can succinctly ex-
press their areas-of-interest using range predicates over
multiple object attributes, which work especially well
for describing spatial regions in the game world. For
example, a player’s interest in all objects in the visible
area around its avatar can be expressed as a range query
(e.g., 10 <z < 50 A 30 < y < 100). As a result, Col-
yseus maintains replicas that are within the union of its
primaries’ areas-of-interest in each node’s local object
store.

Object Location: Colyseus can use either a traditional
randomized DHT or a range-queriable DHT as its ob-
ject locator. Range-queries describing area-of-interests,
which we call subscriptions, are sent and stored in the
DHT. Other objects periodically publish metadata con-
taining the current values of their naming attributes, such
as their x, y and z coordinates, in the DHT. We call these

messages publications. A subscription and its match-
ing publications are routed to the same location in the
DHT, allowing the rendezvous node at which they meet
to send all publications to their interested subscribers.
Since nodes join the object location substrate in a fully
self-organizing fashion, so there is no centralized coordi-
nation or dedicated infrastructure required in Colyseus.

A particular challenge in applying a DHT to object lo-
cation in a real time setting is overcoming the delay be-
tween the submission of a subscription and the reception
of matching publications. Section 6 details two methods
to hide object location delays from the game application,
and describes the trade-off between locality, dynamics,
and complexity when using either DHT substrate in the
context of locating game objects.

Application Interface: From our experience modify-
ing Quake II to use Colyseus (described in Section 7)
and our examinations of the source code of several other
games, we believe that this model is sufficient for im-
plementing most important game operations. Figure 5
shows the primary methods of interface for game ob-
jects managed by Colyseus. There are only two major
additions to the centralized game programming model,
neither of which is likely to be a burden on develop-
ers. First, each object uses GetLocation() to publish
a small number of naming attributes. Second, each ob-
ject specifies its area-of-interest in GetInterest() us-
ing range queries on naming attributes (i.e., a declarative
variant of how area-of-interest is currently computed). A
few additional interface methods exist for optimizations
and are described in subsequent sections.

This architecture does not address some game com-
ponents, such as content distribution (e.g., game patch
distribution) and persistent storage (e.g., storing persis-
tent player accounts). However, the problem of distribut-
ing these components is orthogonal to distributing game-
play and is readily addressed by other research initia-
tives [8, 9].

4 Evaluating Design Decisions

In order to evaluate design decisions in Colyseus, we
developed our own distributed game based on the char-
acteristics observed in Section 2.3. This section de-
scribes this initial workload and the experimental setup
of micro-benchmarks we use in the subsequent sections
to illustrate important aspects of Colyseus’ design. In
Section 7, we apply Colyseus in a distributed version of
Quake II, demonstrating that our observations apply to
an existing game.

4.1 Model Workload

We derived a model workload from our observations
in Quake IIT games (see Section 2.3), which we im-

region popularity (synthetic trace) region popularity (real trace)

(a)

synthetic trace
real trace

nthetic trace
real trace

0 5 10 15 20 25 30 35
10sec Path Length

()

Frac. Regions with Pop. < x
°
2
Frac. Paths with Len. < x
°
2

0 0.005 0.01 0.015 0.02
Normalized Popularity

Figure 6: Comparison of our synthetic game trace with a
real Quake III trace measured with human players.

plemented as a real game played by bots that runs on
top of Colyseus. The game uses synthetic maps with
randomly generated obstacles and bots move using a
obstacle-sensitive mobility model based on Voronoi dia-
grams [18]. Mobility parameters like the probability of
entering fights and staying at or leaving waypoints were
based on trace values. In addition, area of interests are
based on median interest sizes observed in Quake II and
Quake IIT maps. Game mechanics such as object ve-
locity, map size, and fight logic were based directly on
values from Quake II and Quake III.

Figure 6 compares a trace based on our model work-
load with a real Quake III trace on a similar map. Part (a)
shows the relative popularity of different regions in each
map (lighter regions are more popular), where popular-
ity is defined as how often players enter a given region.
Although the maps are clearly different, we see that they
share similar characteristics, such as several highly pop-
ular areas and less popular paths that connect them. Part
(b) and (c) compare the distribution of region populari-
ties and lengths of paths (in the number of regions) taken
by players/bots during 10 second intervals, respectively.
The distributions match up quite closely. Tan, et al. [29]
concurrently developed a similar FPS mobility model
(without fight logic) and found that it predicted client
bandwidth and interest management accuracy well.

4.2 Experimental Setup

We emulate the network environment by running sev-
eral virtual servers on 5-50 physical machines on Em-
ulab [31]. The environment does not constrain link ca-
pacity, but emulates end-to-end latencies (by delaying
packets) using measured pairwise Internet latencies sam-
pled from the MIT King dataset [21]. Median round trip
latencies for samples are between 80ms-90ms. Due to
limited resources and to avoid kernel scheduling arti-
facts, when running several virtual servers on the same

class ColyseusObject

GetInterest(Interest* interest)

Obtain description of object’s interests (e.g., visible area bounding box)

GetLocation(Location* locInfo)

Obtain concise description of object’s location

GetVelocity(Vectors dir)

Obtain object’s current velocity

IsInterested (ColyseusObjectx other)

Decide whether this object is interested in another

PackUpdate(Packet* packet, BitMask mask)

Marshall update of object; bitmask specifies dirty fields for delta-encoding

UnpackUpdate (Packet* packet, BitMask mask)

Unmarshall an update for this object

Figure 5: The interface that game objects implement in applications running on Colyseus.

physical machine, we artificially dilate time (e.g., using
a dilation factor of 3, 1 experimental minute lasts 3 ac-
tual minutes) by dilating all inter-node latencies, timers,
and timeouts accordingly. Hence, our latency results do
not include computational delays, but since our config-
urations emulated at most 8 players per server, compu-
tational delay would be negligible even in a real game
(e.g., see Figure 1(a)). In addition, UDP is used for
transport, so the impact time dilation would have on TCP
does not affect our results. Each game/experiment run
lasts 8 minutes, which is about half the time of a typical
FPS game round.

Different experiments vary two main parameters:
players-per-node and map-type. We use two player-per-
node counts: 1 player per node, which we call the peer-
to-peer scenario (p2p), and 8 players per node, which
we call the federated server scenario (fed). We use the
p2p scenario to illustrate scaling behavior since it allows
us to run the most virtual nodes per physical node in
our testbed. Similarly, we use the fed scenario when
quantifying the characteristics of a particular configu-
ration, since it allows us to run the most total players
in the game world, increasing interactivity. In general,
increasing the number of players per node (while aver-
age density remains constant) increases communication
costs linearly (since all players are randomly spawned
in the map) and does not substantially affect the other
metrics we measure (which are mostly functions of node
count). We have validated these properties in most of our
experiments.

We evaluate two types of maps: square (sqr) and rect-
angular (rect). In both types, we select the map area
that achieves the same average player density as in a full
Quake III game although the density distribution fol-
lows the Zipf-like model we observed. The height of
rect maps is always equal to the diameter of a 16 player
Quake IIT map, while sqr maps vary both dimensions
equally. rect maps simulate a linearization (e.g., using
Hilbert space-filling curves [26]) of a multi-dimensional
map, which may be useful in some games where not
much locality is sacrificed. Note that although the maps
we use are uniform shapes, the area that is traversed dur-
ing game-play obeys actual non-uniform characteristics,
as demonstrated by Figure 6(a). The map type primar-
ily impacts the performance of the object location layer,

08T [% Direct Updates |
§ 0.6 | . | ObjectType | % |
Yooat 1 Player 98.97
g 02| ' topology —— | Missile 64.80

rangedht All 91.69

o L= . !
0 100 200 300 400
Update Latency (msec)
(a) (b)

Figure 7: (a) Comparison of update latencies when sent
directly through the topology and through a DHT. (b) Per-
centage of object updates that can bypass object location.

because the regions of each type will have different lo-
cality properties when mapped onto the DHT identifier
space.

In the following sections, we describe the details
of the replica manager and object locator, using the
above setup to quantify important points. Experiments
are named using the convention node_count-{p2p,fed }-
{sqr,rect} to indicate their configurations.

5 Replica Management

The replica management component manages replica
synchronization, responds to requests to replicate pri-
maries on other nodes, and deletes replicas that are no
longer needed. In our current implementation, primaries
synchronize replicas in an identical fashion to how ded-
icated game servers synchronize clients: each frame, if
the primary object is modified, a delta-encoded update
is shipped to all replicas. Similarly, when a secondary
replica is modified, a delta-encoded update is shipped
to the primary for serialization. Although other update
models are possible for games on Colyseus, this model
is simple and reflects the same loose consistency in ex-
isting client-server architectures.

Decoupling Location and Synchronization: An im-
portant aspect of Colyseus’ replica manager is the de-
coupling of object discovery and replica synchroniza-
tion. Once a node discovers a replica it is interested in, it
synchronizes the replica directly with the primary from
that point on. The node periodically registers interest
with the node hosting the primary to keep receiving up-
dates to the replica.

Another strategy would be to always place each ob-

Proactive Replication
Mean % Missing Missiles
Nodes | Players | On | off

28 224 27.5 72.9
50 400 239 | 645
96 768 272 | 729

Table 1: Impact of proactive replication on missile object
inconsistency.

ject on the node responsible for its region (as in cell-
based architectures [17, 20, 24]). However, FPS game
workloads exhibit rapid player movement between cells,
which entails migration between servers. For example,
in a 96-fed-rect game with one region per server, this
approach causes each player to migrate once every 10
seconds, on average, and hence requires a frequency of
connection hand-offs that would be disruptive to game-
play. Yet another design would be to route updates to
interested parties via the rendezvous node in the DHT
(as in [20]). However, this approach adds at least one
extra hop for each update.

To quantify the impact of decoupling, Figure 7(a)
compares the one-way direct latencies between 96 nodes
in a real world end-host topology [21] (topology) and
the delivery latency of publications and subscriptions in
a 96-fed-rect experiment using both a range-queriable
DHT (rangedht) and a traditional DHT (dht). Although
routing through either substrate achieves much better
than log n hops due to the effectiveness of route caching
with a highly localized workload, the delays are still sig-
nificantly worse than sending updates directly point-to-
point, especially considering the target latency of 50-
100ms in FPS games [1].

In Colyseus, the only time a node incurs the DHT la-
tency is when it must discover an object which it does
not have a replica of. This occurs when the primary just
enters the area-of-interest of a remote object. Figure 7(b)
quantifies how often this happens in the same game if
each player were on a different node (the worst case).
For each object type, the table shows the percentage of
updates to objects that were previously in a primary’s
area-of-interest (and hence would already be discovered
and not have to incur the lookup latency), as opposed
to objects that just entered. For player objects almost
99% of all updates can be sent to replicas directly. For
missiles, the percentage is lower since they are created
dynamically and exist only for a few seconds, but over
half the time missile replicas can still be synchronized
directly also. Moreover, more aggressive interest pre-
diction, which we discuss in the next section, would fur-
ther increase the number of updates that do not need to
be preceded by a DHT lookup, since nodes essentially
discover objects before they actually need them.

Proactive Replication: To locate short-lived objects
like missiles faster, Colyseus leverages the observation

that most objects originate at locations close to their cre-
ator, so nodes interested in the creator will probably be
interested in the new objects. For example, a missile
originates in the same location as the player that shot
it. Colyseus allows an object to attach itself to others
(via an optional AttachTo () method that adds to the
object API in Figure 5). Any node interested in the lat-
ter will automatically replicate the former, circumvent-
ing the discovery phase altogether.

Table 1 shows the impact of proactive replication on
the fraction of missiles missing (i.e., missiles which
were in a primary’s object store but not yet replicated)
from each nodes’ local object store (averaged across all
time instances). We see that in practice, this simple addi-
tion improves consistency of missiles significantly. For
example, in a 400 player game, enabling proactive repli-
cation reduces the average fraction of missiles missing
from 64% to 24%. If we examined the object stores’
100ms after the creation of a missile, only 3.4% are
missing on average (compared to 28% without proac-
tive replication). The remainder of the missing missiles
are more likely to be at the periphery of objects’ area-
of-interests and are more likely to tolerate the extra time
for discovery. In addition, we note that the overhead is
negligible.

Replica Consistency: In Colyseus, writes to replicas
are tentative and are sent to the primary for serializa-
tion. Our model game applies tentative writes (tenta-
tively), but a different game may choose to wait for the
primary to apply it. In other words, individual objects
follow a simple primary-backup model with optimistic
consistency. The backup replica state trails the primary
by a small time window (% RTT, or, from the results
shown in Figure 7(a), <100ms for 93% of node pairs),
and are eventually consistent after this time window.

In addition to per-object consistency, it is desirable
to consider view consistency in the context of a game.
The view of a server (or a player) is the collection of ob-
jects that are currently within the union of the server’s
(player’s) subscriptions. Here, we discuss view consis-
tency with respect to the TACT model [32], since its
continuous range of consistency/performance trade-offs
likely to be most useful to game applications. In the
TACT model, the view of a server can define a conit, or
unit of consistency. There are two types of view incon-
sistency in Colyseus: first, a server is missing replicas
for objects that are within its view; and second, replicas
that are within its view are missing updates or have up-
dates applied out-of-order. Both types of inconsistency
actually exist in any application using the TACT model,
since when a new conit is defined, time is required to first
replicate the desired parts of the database to “initialize”
the conit (resulting in the first type) before maintaining
it (which can result in the second type). The first type is

simply exacerbated in a distributed game because views
change frequently and reads often can not wait for views
to finish forming.

Since Colyseus introduces missing replicas as a sig-
nificant source of inconsistency, we use the number of
missing replicas as the primary metric when evaluating
consistency. Inconsistency due to missing or late up-
dates can be managed in an application specific manner
using the TACT model (with game specified bounds on
order, numerical, and staleness error). Hence, Colyseus
is flexible enough to support games with different view
consistency requirements.

We believe that most fast-paced games would rather
endure temporary inconsistency rather than have the af-
fects of writes (i.e., player actions) delayed, so our im-
plementation adopts an optimistic consistency model
with no bounds on order or numerical error in order to
limit staleness as much as possible. As described above,
this ensures replica staleness remains below 100ms al-
most all of the time. Limited staleness is usually tol-
erable in games since there is a fundamental limit to
human perception at short time-scales and game clients
can extrapolate or interpolate object changes to present
players with a smooth view of the game [1]. More-
over, we observed that frequently occurring conflicts
can be resolved transparently. For example, in our dis-
tributed Quake II implementation, the only frequent con-
flict that affects game-play is a failure to detect collisions
between solid object on different nodes, which we re-
solve using a simple “move-backward” conflict resolu-
tion strategy when two objects are “stuck together.” The
game application can detect and resolve these conflicts
before executing each frame.

6 Locating Distributed Objects

To locate objects, Colyseus implements a distributed lo-
cation service on a DHT. Unlike other publish-subscribe
services built on DHTs [6], the object locator in Coly-
seus must be able to locate objects using range queries
rather than exact matches. Moreover, data items (i.e.,
object location information) change frequently and an-
swers to queries must be delivered quickly to avoid de-
grading the consistency of views on different nodes in
the system. In this section we describe three aspects
of the object locator that enables it to meet these chal-
lenges. In addition, we describe how Colyseus can lever-
age range-queriable DHTs in its object locator design.

6.1 Location Overview

DHTs [28, 25] enable scalable metadata storage and lo-
cation on a large number of nodes, usually providing
a logarithmic bound on the number of hops lookups
must traverse. With a traditional DHT, the object loca-

tor bucketizes the map into a discrete number of regions
and then stores each publication in the DHT under its
(random) region key. Similarly, subscriptions are bro-
ken up into DHT lookups for each region overlayed by
the range query. When each DHT lookup reaches the
rendezvous node storing metadata for that region, it re-
turns the publications which match the original query
back to the original node.

Range-queriable DHTs [3, 19] may be better fit to a
distributed game architecture. Unlike traditional DHTSs
which store publications under discrete random keys to
achieve load balance, a range-queriable DHT organizes
nodes in a circular overlay where adjacent nodes are re-
sponsible for a contiguous range of keys. A range query
is typically routed by delivering it to the node respon-
sible for leftmost value in the range. This node then
forwards the query to other nodes in the range. For ex-
ample, using a range-queriable DHT, the object placer
could use the x dimension attribute directly as the key.
Since key values are stored continuously on the overlay
(instead of randomly), range queries can be expressed
directly, instead of having to be broken up into multi-
ple DHT lookups. Moreover, object location metadata
and queries are likely to exhibit spatial locality, which
maps directly onto the overlay, allowing the object lo-
cator to circumvent routing paths and deliver messages
directly to the rendezvous by caching recent routes. Fi-
nally, since nodes balance load dynamically to match the
publication and subscription distribution, they may be
able better handle the Zipf-like region popularity distri-
bution observed in Section 2.

Colyseus implements both object location mecha-
nisms, and we evaluate the trade-offs of each in Sec-
tion 6.3.

6.2 Reducing Discovery Latency

Regardless of the underlying DHT substrate, the object
locator in Colyseus provides two important primitives to
reduce the impact of object discovery latency and over-
head.

Interest Prediction and Aggregation: Spatial and tem-
poral locality in object movement enables prediction
of subscriptions (e.g., if an object can estimate where
it will be in the near future, it can simply subscribe
to that entire region as well). Colyseus expands a
the bounding volume subscribed to by an object (via
GetInterest ()) using the following formula:

Vol.min— =PredTime X PredMoveUpLeft + PubTime
Vol.max+ =PredTime x PredMoveDownRight + PubTime

This formula predicts the amount of movement an
object will make in each direction per game time
unit and multiplies it by the desired prediction time

. T : 0.2
M Bandwidth —e—
§- 1000 Inconsistency ----+--- 045 g>‘
£ 177 2
2 800 [2
‘§ 1 0.1 §
< £
o L
e 800R g {005 §
3 ! ; ! b=
2 o i

100 1000

PredTime (msec)

Figure 8: The impact of varying PredTime on total mean
node bandwidth and local object store inconsistency.

(PredTime), which a per-object configuration parame-
ter. The default implementation uses moving average
of an object’s velocity to estimate PredMoveUpLeft and
PredMoveDownRight, but the application can override
it (via an additional object API method) if more is known
about an object’s physics (e.g., missiles always move in
a straight line). A small factor (PubTime) is added to
account for the discovery and delivery time of publica-
tions for objects entering the object’s subscription vol-
ume. Thus, if predicted subscriptions are stored in the
DHT with a TTL = PredTime, it is unlikely they will
have to be refreshed within that time. Subscription pre-
diction amounts to speculative pre-fetching of object lo-
cation attributes.

Speculation can incur overhead. Figure 8(a) shows
the impact of tuning subscription prediction (by varying
PredTime) in a 50-fed-rect game. The top line plots the
total mean bandwidth required by each node, while the
bottom line shows the mean local object store inconsis-
tency, defined as the average fraction of missing player
replicas in each node’s object store across all time in-
stances (an object is missing if it enters a primary’s area-
of-interest, but is not yet discovered). Error bars indicate
one standard deviation.

The variation in bandwidth cost as we increase
PredTime demonstrates the effects of speculation.
When speculation time is too short (e.g., we only pre-
dict 100 ms or 1 frame into the future), each object must
update subscriptions in the system more frequently, in-
curring a high overhead. If speculation time is too long,
although objects can leave their subscriptions in the sys-
tem for longer periods of time without updates, they
receive a large number of false matches (publications
which are in the speculated area-of-interest but not in the
actual area-of-interest), also incurring overhead. Extra-
neous delivery of matched publications does not result in
unnecessary replication, since upon reception of a pre-
fetched publication, a node will cache (for the length
of the TTL) and periodically check whether it actually
desires the publishing object by comparing the publica-
tion to its up-to-date unpredicted subscriptions locally.
Hence, overhead is solely due to extra received publica-
tions. In this particular configuration, the “sweet-spot”

is setting PredTime around 1 second. Although this op-
timal point will vary depending on game characteristics
(e.g., density, update size, etc.), notice that we are able
to maintain the same level of inconsistency regardless
of the PredTime value. Hence, we can automatically
optimize PredTime without affecting the level of incon-
sistency observed by the game. In addition, although we
focused on using prediction to minimize communication
overhead, we can also trade-off overhead for improved
consistency by increasing PubTime.

To further reduce subscription overhead, Colyseus
enables aggregation of overlapping subscriptions using
a local subscription cache, which recalls subscriptions
whose TTLs have not yet expired (and, thus, are still
registered in the DHT), and an optional aggregation fil-
ter, which takes multiple subscriptions and merges them
if they contain sufficient overlap. This filter uses effi-
cient multi-dimensional box grouping techniques origi-
nally used in spatial databases [15].

Soft State Storage: In most publish-subscribe systems,
only subscriptions are registered and maintained in the
DHT while publications are not. The object locator
stores both publications and subscriptions as soft state at
the rendezvous, which expire them after a TTL carried
by each item. When a subscription arrives, it matches
with all currently stored publications, in addition to pub-
lications that arrive after it.

This design achieves two goals: First, if only sub-
scriptions were stored, subscribers would have to wait
until the next publication of an interesting object before
it would be matched at the rendezvous. By storing pub-
lications, a subscription can immediately be matched to
recent publications. This suffices for informing the node
about relevant objects due to spatial locality of object
updates. Second, different types of objects change their
naming attributes at different frequencies (e.g., items
only change locations if picked up by a player), so it
would be wasteful to publish them all at the same rate.
Moreover, even objects with frequently changing nam-
ing attributes can publish at lower rates (with longer
TTLs) by having subscription prediction take into ac-
count the amount of possible staleness (i.e., we add
PubTTLxVelocity to the PubTime factor above, ac-
counting for how far an object could have moved be-
tween publication intervals).

6.3 Comparison of Routing Substrates

In this section, we evaluate how the performance of
Colyseus is affected by the choice of the routing sub-
strate: a traditional DHT (dht) versus a range-queriable
DHT (rangedht). In general, our results show rangedht
incurs lower bandwidth overhead compared to a dht
by utilizing contiguity in data placement and has good
scaling properties if the game map can be linearized.

120 T
[Maintenance

100 |- -Bl Matching]

8O [

qr
éct

60 [

dht + s

40 o

range«

20 [i

Mean outgoing bandwidth (kbps)

9 25 64 100 225

Number of nodes

Figure 9: Scaling of per-node bandwidth using a dht and
rangedht in a p2p game with sqr and rect maps.

rangedht incurs higher object discovery latency com-
pared to a dht, but at time scales of 100ms, the resultant
inconsistency in game-state is indistinguishable. Finally,
rangedht more fairly balances object location overhead
between all nodes, suggesting that it is more suitable in
bandwidth constrained deployments.

Colyseus uses an implementation of Mercury [3] with
the extensions described earlier in this section. Mercury
is used both as the dht and the rangedht, handling pub-
lications and subscriptions as described in Section 6.1.
When used as a dht, Mercury breaks up each map into
a number of regions equal to the number of players in a
map. When used as a rangedht, the x dimension is used
as the key attribute. In both cases, each node caches
21log(n) recently used routes.

6.3.1 Communication Costs

Figure 9 compares the average per-node outbound band-
width requirements for object discovery, varying the
number of nodes and the map type in p2p games. The
bandwidth value reported by each node is the mean taken
over a S-minute period in the middle of the experiment.
Bandwidth is divided into three components: sending
and routing publications and subscriptions in Mercury
(routing), delivering matched publications and subscrip-
tions (matching), and DHT maintenance (maintenance).
In all cases, rangedht consumes less bandwidth than
dht.

Performance of a dht is similar for both sqr and rect
maps. However, a rangedht performs noticeably better
with rect maps because the total span of the key-space
is larger relative to the width of subscriptions, so each
subscription covers fewer nodes.

Scaling Behavior: Since the map area grows linearly
with the number of players and subscription area is con-
stant, as more nodes are added to a rangedht, the number
of nodes contacted for each subscription stays constant if
using a rect map, but grows proportional to /7 if using a
sqr map. For a dht substrate, this number stays constant
irrespective of the map type. However, the lack of local-
ity in the generated subscriptions results in higher rout-

[Metric [dht [loadbal |
Per-node total bwidth std-dev 0.30 0.15
(normalized by mean) max 1.93 1.45

Per-node matching bwidth std-dev 1.01 0.57
(normalized by mean) max 441 2.57
Avg. % missing replicas 8%+6% 10%=+9%

Table 2: Effectiveness of a load-balanced rangedht. The
percentage of missing replicas shows the mean and stan-
dard deviation.

ing overhead since caching routes becomes less effec-
tive. In addition to these effects, since player interaction
grows as the number of players in the game increase, the
overall matching traffic also grows (as Figure 9 shows).
Hence, we observe that both dht and rangedht routing
bandwidth scale poorly using sqr maps, but rangedht
scales well with a linearized rect map.

Load Balancing: Since popularity of the regions in the
model workload is Zipfian, nodes in the routing ring re-
sponsible for such regions can get considerably more
traffic than others. We now focus on the effectiveness
of the leave-join load-balancing mechanisms built into
the Mercury rangedht, which dynamically moves lightly
loaded nodes to heavily loaded regions the DHT. The
number of publications and subscriptions routed per sec-
ond, averaged over a 30-second moving window, is used
as the measure of the load.

Table 2 compares the bandwidth and view inconsis-
tency (see Section 6.3.2) for a 96-fed-rect game. We find
that a rangedht with load balancing enabled (loadbal) re-
duces the maximum per-node bandwidth by about 25%
(relative to the mean) and the maximum per-node match-
ing bandwidth by about 42%, compared to a dht. While
partitioning a busy range may not necessarily result in
decreasing routing load (since each subscription will
have to visit all nodes that span its range), it is effec-
tive at partitioning the matching load which is a signif-
icant component of the total bandwidth costs (see Fig-
ure 9). Also, the average fraction of missing replicas is
not substantially higher, suggesting that players do not
lose many updates due to the leave-join dynamics of load
balancing.

6.3.2 Latency and Inconsistency

In this section, we evaluate the impact of the routing sub-
strate on game-state consistency. We first evaluate how
long it takes for a node to discover and replicate an ob-
ject that it is interested in, which provides an estimate of
the worst case delay that a view might have to endure.
We then examine the impact that this latency has on the
consistency of local object stores on different nodes.

Discovery Latency: Figure 10 shows the median time
elapsed between submitting a subscription and genera-
tion of a matching publication for the different DHTs
and map types. This latency is broken down into two

T
250 (— {F -Matching - - - - === - -]
[Routing

200 [L

qr
ect

,,,,,,,,,,,,,,,,,,,,

+ S

150 f oo

gedht +
rect

100 -

ran,
dht +

t + sqr

50 [

Mean object discovery latency (ms)

25 64 100 225

Number of nodes

Figure 10: The mean time required to discover replica of
an object once a subscription is generated.

parts: routing the subscription to the first (left-most) ren-
dezvous (routing), and delay incurred at the rendezvous
before a matching publication arrives (matching). To
completely construct a replica, an additional delay of
1.5 RTT (135ms on average) must be added: 0.5 RTT
for delivering the publication, and 1 RTT for fetching
the replica. However, this latency is independent of the
location substrate.

The routing delay for subscriptions scales similarly in
both DHTs, as expected. Both are able to exploit caching
so the median hop count is at most 3 in all cases. How-
ever, the matching latency is higher for the rangedht
case. This is because the matching component incorpo-
rates the latency incurred when spreading the subscrip-
tion after reaching the left-most rendezvous point. Thus,
dht incurs bandwidth overhead by sending multiple dis-
joint subscriptions, but obtains an small overall latency
advantage.

Discovery latencies are only incurred when an inter-
esting object is first discovered (e.g., when a player en-
ters a new room or an object enters the periphery of a
player’s visible area). Once a replica is discovered and
created, it will be kept up to date through direct commu-
nication with the primary. Hence replica staleness will
be tied to the latency distribution of the topology, which
is less than 100ms for most node pairs (see Section 5).
Incorporating proximity routing techniques [14] into our
Mercury implementation can further reduce the latency
of the routing component in both cases.

View Inconsistency: Now we examine the impact of
discovery delay on view consistency. We define view
consistency as the ratio of replicas missing and total
replicas in a node’s subscriptions (summed over all game
frames). Figure 11 shows the fraction of replicas miss-
ing for a dht and rangedht in p2p-sqr games, if we allow
Oms, 100ms, and 400ms to elapse after the objects enter
a node’s subscriptions.

We see that inconsistency in game state iS approxi-
mately the same irrespective of the choice of the rout-
ing substrate. The rangedht has slightly higher inconsis-

0.14 ; .
—=— rangedht:no delay
rangedht:100ms delay
0.12 - -.©-- rangedht:400ms delay
4 dht:no delay
01 k- -4 dht:100ms delay
. —H&— dht:400ms delay

0.08 -
0.06 -

0.04

Avg. frac mobile objects missing

0.02 -

0 50 100 150 200 250
Number of nodes

Figure 11: The fraction of replicas missing averaged across
all time instances as we scale the number of servers.

tency due to the higher object discovery latency. How-
ever, this difference vanishes if we allow for a small de-
lay of 100ms. For both DHTs, the inconsistency is fairly
low. For example, with 64 nodes, about 4% of the ob-
jects required are missing at any given time. This im-
proves to about 2% missing if we allow for a 100ms de-
lay (1 frame), and it improves to 1% missing if we allow
for a 400ms delay (4 frames).

7 Evaluation With a Real Game

To demonstrate the practicality of our system, we mod-
ified Quake II to use Colyseus. In our Quake II imple-
mentation, we represent an object’s area-of-interest with
a variable-sized bounding box encompassing the area
visible to the object. We automatically delta-encode and
serialize Quake II objects using field-wise diffs, so the
average object delta size in our implementation is 145
bytes. Quake II's server to client messages are more
carefully hand-optimized and average only 22 bytes.
Unmodified Quake II clients can connect to our dis-
tributed servers and play the game with an interactive
lag similar to that obtained with a centralized server. As
a result, the system can be run as a peer-to-peer applica-
tion (with every client running a copy of the distributed
server) or as a distributed community of servers.

We use a large, custom map with computer controlled
bots as the workload, and the same Emulab testbed setup
described in section 4 for our Quake II evaluation. How-
ever, we did not artificially dilate time, so all numbers re-
ported take into account actual execution times. We use
the Mercury rangedht as the object location substrate,
and linearize the game map when mapping it onto the
DHT. Further details about our Quake II prototype and
additional results can be found in an associated technical
report [4].

7.1 Communication Cost

Figure 12 compares the bandwidth scaling of Colyseus
running p2p games with the client-server and broadcast
architecture alternatives. We simulate the alternatives

100000

— ™ ™ ™ — ™ ™ ™ ™ ™ - 4000 — ™ ™ ™ ™ ™ ™ ™ ™
& £3- colyseus-aggregate & £3- colyseus-aggregate & routing+matching+updates —#—
£ 100000 ¢ single-server R 2 single-server £ 3500 |- routing+matching
= A broadcast o = A broadcast 8 = routing -4
ES —&— colyseus kS 10000 | —®— colyseus 13 RO | 3 3000
2 10000 = 3 H .
2 = 2] A 2 2500
< @ B @
38 o 38 A S
=) N =) 1000 (& . o 2000
£ oo e £ G £ L]
k<) AT =) IRl 2 1500
: S S : Y P ET i
® 100 o & p— ° 100 4 i © 1000
; - ; M g
g 2 £ 500 -
2 0 . 2 o= . & PG -——
0 50 100 150 200 250 0O 20 40 60 80 100 120 140 20 30 40 50 60 70 80 90 100
Number of nodes Number of nodes Number of servers
(a) Model Workload (b) Quake II (c) Quake II (Same Density)

Figure 12: Bandwidth scaling properties using (a) the model workload and (b) the Quake II workload (note the logarithmic
scale). Part (c) shows the scaling of Quake II, with a constant number of players.

using the same game-play events as the real execution
on Colyseus.

Figure 12(a) shows the scaling properties with rect
maps under our model workload. The workload keeps
mean player density constant by increasing the map size.
The thin error bar indicates the 95th percentile of 1 sec-
ond burst rates across all nodes, while thick error bars in-
dicate 1 standard deviation from the mean. The colyseus
and broadcast lines show per-node bandwidth while the
colyseus-aggregate line shows the total bandwidth used
by all nodes in the system. At very small scales (e.g.,
9 players), the overhead introduced by object location
is high and Colyseus performs worse than broadcast.
As the number of nodes increases, each node in Col-
yseus generates an order of magnitude less bandwidth
than each broadcast node or a centralized server. More-
over, we see that Colyseus’ per-node bandwidth costs
rise much more slowly with the number of nodes in-
crease than either of the alternatives. Nonetheless, the
colyseus-aggregate line shows that we do incur an over-
all overhead factor of about 5. This is unlikely to be an
issue for networks with sufficient capacity.

Figure 12(b) shows the same figure when running
with the Quake II workload. We observe similar scaling
characteristics here, except that the per-node Colyseus
bandwidth appears to scale almost quadratically rather
than less-than-linearly as in our model workload. This
is primarily due to the fact that the Quake II experiments
were run on the same map, regardless of the number of
players. Thus, the average density of players increased
with the number of nodes, which adds a quadratic scal-
ing factor to all four lines. To account for this effect,
Figure 12(c) shows how each component of Colyseus’
traffic scales (per node) if we fixed the number of play-
ers in the map at 400 and increase the number of server
nodes handling those players (by dividing them equally
among the nodes). Due to inter-node interests between
objects, increasing the number of nodes may not reduce
per-node bandwidth cost by the same factor. In this ex-
periment, we see a 3-fold decrease in communication
cost per node with a 5-fold increase in the number of

nodes, so overhead is less than a factor of 2. We ex-
pect similar bandwidth scaling characteristics to hold for
our model workload and Quake II if average player den-
sity were fixed. This result shows that the addition of
resources in a federated deployment scenario can effec-
tively reduce per-node costs.

If we hand-tune update delta sizes so they were
smaller, the client-server and broadcast architectures
would perform better. However, Figure 12(c) shows that
updates also account for over 75% of Colyseus’ costs, so
Colyseus would get a substantial benefit as well. More-
over, the scaling properties would not change.

7.2 View Inconsistency

We now examine the view inconsistency, i.e., fraction of
missing local replicas, observed in the Quake II work-
load (Section 6.3.2 showed this for the model workload.)
Figure 13(a) shows the fraction of replicas missing as we
scale the number of nodes for a p2p scenario. The results
are very similar to those obtained with the model work-
load. Note that nearly one half of the replicas a node is
missing at any given time instance arrive within 100ms
and less than 1% take longer than 400ms to arrive.

Figure 13(b) shows the cumulative distribution of the
number of missing objects for a 40-fed game. On aver-
age, a node requires 23 remote replicas at a given time
instance. About 40% of the time, a node is missing no
replicas; this improves to about 60% of the time if we
wait 100ms for a replica to arrive and to over 80% of
the time if we wait 400ms for a replica to arrive. The
inconsistency is less for sparser game playouts.

Although the fraction of missing replicas is low, ob-
jects in a view can differ in semantic value; e.g., it is
probably more important to promptly replicate a mis-
sile that is about to kill a player than a more distant ob-
ject. In general, a game-specific inconsistency metric
might consider the type, location, and state of missing
objects to reflect the total impact on game-play quality.
Due to locality in object movement, Colyseus’ replica-
tion model accounts for at least one important aspect:
location. Figure 13(c) compares the distance (over time)

0.1

1

08

06

04

__ 400ms delay --o-

02

Frac. replicas at distance < x

100ms delay ---o-- |

required replicas
) missing replicas‘ e

no delay —=— o

—&— no delaf/ i ”
0.09 [@ 100ms delay 2
g’ 0.08 | ~©- 400ms delay . B / | %
3 o
2 007 ® °
c 0.06 I\M’/IE}‘E/Q v
2 . o
° <
2 005 N 2
e osl o £
§ 0.03 ,’ | S— P g - é
2 oo [I . s
001 17 g o g o
e oo e 0 ‘ ‘
0 20 40 60 80 100 120 140 160 0 5 10

Number of nodes

(a) Consistency Scaling

Num. objects missing

(b) 40-fed

15 20 25 30 0 0.05 0.1 0.15 0.2 0.25
Normalized map distance

(c) Missing Replica Locations

Figure 13: (a) Mean fraction of replicas missing as we vary the number of servers/players in Quake II. (b) CDF of missing
objects in a 40-fed game. (c) CDF showing the distance of missing replicas from a subscriber’s origin.

of a player to objects in its area-of-interest and the dis-
tance to those that are missing. Replicas that are miss-
ing from a view tend to be closer to the periphery of ob-
ject subscriptions (and hence, farther away from the sub-
scriber and probably less important). The difference in
the distributions is not larger because subscription sizes
in Quake II are variable, so objects at the periphery of a
subscription may still be close to a player if they are in a
small room. We leave a more game-play-centric evalua-
tion of view inconsistency to future work.

7.3 Discussion

Throughout our evaluation of Colyseus we have used
workloads derived from Quake II or Quake III, which
we believe are representative of FPS games in general.
However, questions remain about how representative our
results are to other game genres, such as massively mul-
tiplayer Role Playing Games (RPGs.)

RPGs have lower update rates and have much smaller
per-player bandwidth requirements than FPS games [7].
Hence, they are usually designed to tolerate much longer
delays in processing player actions. In general, these
characteristics imply that an RPG game implemented on
Colyseus would incur lower communication costs than
what we have measured. We do not expect discovery de-
lay and replica staleness to change substantially because
they are primarily functions of system size and network
topology. Consistency may actually improve since play-
ers generally move slower in RPG games, and players
have a higher tolerance for inconsistency (lower update
rates imply existing game clients already tolerate staler
state.) Thus, although we have demonstrated two case
studies that effectively used Colyseus, we believe it can
also be applied to less demanding game genres.

8 Related Work

There are a number of other commercial and research
game architectures. Some games (e.g., MiMaze [12]
and most Real Time Strategy (RTS) games [2]) use par-
allel simulation, where each player simulates the entire
game world. All objects are globally replicated and kept

consistent using lock-step synchronization and update
broadcast, resulting in quadratic scaling behavior and
limiting response time to the speed of the slowest client.
These deficiencies are tolerated in RTS games because
they rarely involve more than 8 players.

Second-Life [24] and Butterfly.net [17] perform inter-
est filtering by partitioning the game world into disjoint
regions called cells. SimMUD [20] makes this approach
fully distributed by assigning cells to keys in a DHT,
though, unlike Colyseus, primaries in SimMUD reside
on the rendezvous node. Although these approaches
share some traits with Colyseus, we believe that we are
the first to demonstrate the feasibility of implementing
a real-world game on a distributed architecture that is
(1) not designed for a centralized cluster ([24, 17]), and
(2) that supports FPS games, which have much tighter
latency constraints than RPGs (which were targeted by
SimMUD). Furthermore, using a cell-based design with
an FPS game can result in frequent object migration, as
shown in Section 5.

Several architectures proposed for Distributed Virtual
Reality environments and distributed simulation (no-
tably, DIVE [11], MASSIVE [13], and High Level Ar-
chitecture (HLA) [16]) have similar goals as Colyseus
but focus on different design aspects. DIVE and MAS-
SIVE focus on sharing audio and video streams between
participants while HLA is designed for military simula-
tions. None address the specific needs of modern mul-
tiplayer games and, to our knowledge, none have been
demonstrated to scale to hundreds of participants with-
out the use of IP multicast.

9 Summary and Future Work

This paper described the design, implementation and
evaluation of a distributed architecture for online multi-
player games. Colyseus enables low-latency game-play
via three important design choices: (1) decoupling ob-
ject discovery and replica synchronization, (2) proactive
replication for short-lived objects, and (3) pre-fetching
of relevant objects using interest prediction. Our investi-
gation showed that a range-queriable DHT achieves bet-

ter scalability and load balance than a traditional DHT
when used as a object location substrate, with a small
consistency penalty. We believe our adaptation of a com-
mercial game (Quake II) demonstrates the practicality of
Colyseus’ design.

Nonetheless, our work on Colyseus is on-going. For
example, Colyseus enables three new avenues for cheat-
ing: (1) nodes can modify objects in their local store in
violation of game-play logic (2) nodes can withhold pub-
lications or updates of objects they own, and (3) nodes
can subscribe to regions of the world that they should
not “see.” Although our work on addressing cheating is
nascent, we believe we can leverage Colyseus’ flexibil-
ity in object placement by carefully selecting the owners
of primary objects to limit the damage inflicted by ma-
licious nodes. Moreover, nodes holding replicas can act
as witnesses to detect violations of game-play rules.

For more information about the project (soft-
ware, documentation and announcements), please visit:
http://www.cs.cmu.edu/ ashu/gamearch.html

10 Acknowledgements

We would like to thank our shepherd Alex Snoeren and
the anonymous reviewers for their comments and sug-
gestions. James Hayes and Sonia Chernova collected
the Quake III traces we based our model game on. This
work was funded by a grant from the Technology Col-
laborative.

References

[1] BEIGBEDER, T., ET AL. The Effects of Loss and La-
tency on User Performance in Unreal Tournament 2003.
In NetGames (Aug. 2004).

[2] BETTNER, P., AND TERRANO, M. 1500 Archers on a
28.8: Network Programming in Age of Empires and Be-
yond. Gamasutra (Mar. 2001).

[3] BHARAMBE, A., ET AL. Mercury: Supporting scalable
multi-attribute range queries. In SIGCOMM (Aug. 2004).

[4] BHARAMBE, A., ET AL. A Distributed Architecture for
Interactive Multiplayer Games. Tech. Rep. CMU-CS-05-
112, CMU, Jan. 2005.

[5] Big World. http://www.microforte.com.

[6] CASTRO M., ET AL. SCRIBE: A large-scale and decen-
tralized application-level multicast infrastructure. /EEE
J. on Sel. Areas in Comm. 20, 8 (Oct. 2002).

[71 CHEN, K., ET AL. Game Traffic Analysis: An
MMORPG Perspective. In NOSSDAV (June 2005).

[8] DABEK, F. ET AL. Wide-area cooperative storage with
CFES. In SOSP (Oct. 2001).

[9] DRUSCHEL, P., AND ROWSTRON, A. Storage manage-

ment and caching in PAST, a large-scale, persistent peer-

to-peer storage utility. In SOSP (Oct. 2001).

FENG, W., ET AL. Provisioning on-line games: A traffic

analysis of a busy counter-strike server. In IMW (Nov.

2002).

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

FRECON, E., AND STENIUS, M. DIVE: A scaleable
network architecture for distributed virtual environments.
Dist. Sys. Eng. J. 5, 3 (1998), 91-100.

GAUTIER, L., AND DI1OT, C. MiMaze, A Multiuser
Game on the Internet. Tech. Rep. RR-3248, INRIA,
France, Sept. 1997.

GREENHALGH, C., ET AL. Massive: a distributed virtual
reality system incorporating spatial trading. In ICDCS
(June 1995).

GUMMADI, K. P., ET AL. The Impact of DHT Routing
Geometry on Resilience and Proximity. In SIGCOMM
(Aug. 2003).

GUTTMAN, A. R-trees: a dynamic index structure for
spatial searching. In SIGMOD (June 1984).

IEEE standard for modeling and simulation high level ar-
chitecture (HLA), Sept. 2000. IEEE Std 1516-2000.
IBM and Butterfly to run PlayStation 2 games on Grid.
http://www-1.ibm.com/grid/announce_
227 .shtml, Feb. 2003.

JARDOSH, A. ET AL. Towards Realistic Mobility Models
for Mobile Ad hoc Network. In MOBICOM (Sept. 2003).
KARGER, D., AND RUHL, M. Simple efficient load-
balancing algorithms for peer-to-peer systems. In IPTPS
(Feb. 2004).

KNUTSSON, B. ET AL. Peer-to-peer support for mas-
sively multiplayer games. In INFOCOM (July 2004).
MIT King Data. http://www.pdos.lcs.mit.
edu/p2psim/kingdata.

Quake IL http://www.idsoftware.com/
games/quake/quake?2.

Quake IIT Arena. http://www.idsoftware.com/
games/quake/quake3-arena.

ROSEDALE, P., AND ONDREJKA, C. Enabling
Player-Created Online Worlds with Grid Computing and
Streaming. Gamasutra (Sept. 2003).

ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable,
distributed object location and routing for large-scale p2p
systems. In Middleware (Nov. 2001).

SAGAN, H. Space-Filling Curves. Springer-Verlag, New
York, NY, 1994.

SHAIKH, A., ET AL. Implementation of a Service Plat-
form for Online Games. In NetGames (Aug. 2004).
StoIicA, 1., ET AL. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM
(Aug. 2001).

TAN, S. A., ET AL. Networked game mobility model for
first-person-shooter games. In NetGames (Oct. 2005).

Torque Networking Library. http://www.

opentnl.org.

WHITE, B., ET AL. An integrated experimental envi-
ronment for distributed systems and networks. In OSDI
(Dec. 2002).

Yu, H., AND VAHDAT, A. Design and Evaluation of

a Conit-based Continuous Consistency Model for Repli-
cated Services. ACM Trans. on Comp. Sys. (Aug. 2002).

