A Fully Distributed Architecture for Massively Multiplayer
Online Games

Chris GauthierDickey, Daniel Zappala and Virginia Lo
University of Oregon
Department of Computer Science
1202 University of Oregon
Eugene, OR 97403-1202
{chrisg | zappala | lo}@cs.uoregon.edu

Categories and Subject Descriptors: C.2.4 [Distributed
Systems]:Distributed applications

General Terms: Design, Security, Reliability

Keywords: distributed, architecture, multiplayer, interac-
tive, games

Historically, massively multi-player online games (MMOs)
have used a client/server architecture. This architecture has
the advantage that a single authority orders events, resolves
conflicts in the simulation, acts as a central repository for
data, and is easy to secure. On the other hand, it has the
disadvantage of increased latency, localized congestion at the
server, limited storage capacity, and limited computational
power by the server.

We are developing a fully distributed, peer-to-peer archi-
tecture for MMOs that has the potential to overcome these
problems. Players can send messages directly to each other,
thereby reducing delay and eliminating localized congestion.
The storage capacity created by combining the storage re-
sources of all players can easily exceed that of a single server.
Furthermore, the ability to execute thousands of remote
processes in parallel on user machines provides unparalleled
computational power for MMOs. Finally, this architecture
would allow individuals to start their own MMO without the
incredible investment in resources required by client/server
architectures.

However, a distributed architecture has several fundamen-
tal and challenging problems that must be overcome. First,
it must authenticate and grant access rights to players in the
game. It must maintain consistency, order events, and prop-
agate events to intended recipients. The architecture needs
to provide tamper-resistant storage of characters and game
state and it needs to schedule computations across the play-
ers. Last, it must provide responsiveness and be thoroughly
cheat-proof.

We divide our architecture into four main components:
authentication, communications, storage, and computation.
The authentication component is responsible for controlling
access to the game. The communication component deter-
mines how players send messages to each other and the stor-
age component provides long-term storage of world state.

Copyright is held by the author/owner.
S GCOMM’ 04 Workshops, Aug. 30+Sept. 3, 2004, Portland, Oregon, USA.
ACM 1-58113-942-X/04/0008.

171

Last, the computation component schedules computations
across the player base.

The authentication component is responsible for providing
access control to the game. In order to authenticate securely,
we assume the authentication component (AC) is trusted.
The AC works by digitally signing two pairs (player.d, ex-
piration_date) and (player_.id, public_key). These pairs are
published on a distributed hash table (DHT) accessible by
all players. Using the DHT, players can validate other play-
ers and discover their public key without needing to con-
tact the AC. Further, the AC can publish a special pair,
(player_id, banned), which bans a player from the game.

The communication component (CC) is responsible for
exchanging messages and events between players. The pri-
mary duties of the CC is to enforce an ordering of events
between players, to keep latency as low as possible, and to
prevent cheating. Our CC uses the NEO protocol [1] for
small groups to provide low-latency, cheat-proof event or-
dering. Each NEO group then uses several leaders to form a
hierarchy of groups so that events with a scope larger than
the group can be propagated accordingly through the hier-
archy.

The storage component (SC) provides long-term, persis-
tent data storage. We divide storage into two categories:
permanent and ephemeral. Permanent data, which must al-
ways be available, is kept safe by both the player owning
the data and replicated by an underlying DHT. Ephemeral
data, or data which is only temporary, is simply stored on
a DHT, and recreated by the system as needed.

The computation component schedules game computa-
tions among the players. For example, monster Al could be
scheduled for players to execute. While a certain amount of
computations can be done locally by characters interacting
with their environment, the computation component must
ensure that players are not cheating. Thus, remote processes
must be scheduled among players and results must be ver-
ified. We use randomly selected witnesses to perform key
calculations and to ensure a cheat-proof environment.

REFERENCE

[1] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr.
Low Latency and Cheat-proof Event Ordering for
Peer-to-Peer Games. In ACM NOSSDAV, 2004.

